Menu Close

Solve-log-2x-3-x-2-lt-1-




Question Number 21357 by Tinkutara last updated on 21/Sep/17
Solve : log_(2x+3) x^2  < 1
$$\mathrm{Solve}\::\:\mathrm{log}_{\mathrm{2}{x}+\mathrm{3}} {x}^{\mathrm{2}} \:<\:\mathrm{1} \\ $$
Answered by dioph last updated on 21/Sep/17
2x + 3 > 0 ⇒ x > −(3/2)  2x + 3 ≠ 1 ⇒ x ≠ −1  ((log x^2 )/(log 2x+3)) < 1  Case 1: x < −1 (2x + 3 < 1)  log 2x + 3 < 0  ⇒ log x^2  > log 2x+3  ⇒ log (x^2 /(2x+3)) > 0  ⇒ (x^2 /(2x+3)) > 1  ⇒ x^2   −2x − 3 > 0  ⇒ x ∈ (−∞,−1) ∪ (3, +∞)  but x < −1 ⇒ x ∈ (−∞,−1)  Case 2: x > −1 (2x+3 > 1)  log 2x+3 > 0  ⇒ log x^2  < log 2x+3  ⇒ log (x^2 /(2x+3)) < 0  ⇒ (x^2 /(2x+3)) < 1  ⇒ x^2 −2x−3 < 0  ⇒ x ∈ (−1,3)  x > −1 ⇒ x ∈ (−1, 3)  putting together:  x ∈ (−(3/2), 3) − {−1}
$$\mathrm{2}{x}\:+\:\mathrm{3}\:>\:\mathrm{0}\:\Rightarrow\:{x}\:>\:−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\mathrm{2}{x}\:+\:\mathrm{3}\:\neq\:\mathrm{1}\:\Rightarrow\:{x}\:\neq\:−\mathrm{1} \\ $$$$\frac{\mathrm{log}\:{x}^{\mathrm{2}} }{\mathrm{log}\:\mathrm{2}{x}+\mathrm{3}}\:<\:\mathrm{1} \\ $$$$\mathrm{Case}\:\mathrm{1}:\:{x}\:<\:−\mathrm{1}\:\left(\mathrm{2}{x}\:+\:\mathrm{3}\:<\:\mathrm{1}\right) \\ $$$$\mathrm{log}\:\mathrm{2}{x}\:+\:\mathrm{3}\:<\:\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{log}\:{x}^{\mathrm{2}} \:>\:\mathrm{log}\:\mathrm{2}{x}+\mathrm{3} \\ $$$$\Rightarrow\:\mathrm{log}\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}{x}+\mathrm{3}}\:>\:\mathrm{0} \\ $$$$\Rightarrow\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}{x}+\mathrm{3}}\:>\:\mathrm{1} \\ $$$$\Rightarrow\:{x}^{\mathrm{2}} \:\:−\mathrm{2}{x}\:−\:\mathrm{3}\:>\:\mathrm{0} \\ $$$$\Rightarrow\:{x}\:\in\:\left(−\infty,−\mathrm{1}\right)\:\cup\:\left(\mathrm{3},\:+\infty\right) \\ $$$$\mathrm{but}\:{x}\:<\:−\mathrm{1}\:\Rightarrow\:{x}\:\in\:\left(−\infty,−\mathrm{1}\right) \\ $$$$\mathrm{Case}\:\mathrm{2}:\:{x}\:>\:−\mathrm{1}\:\left(\mathrm{2}{x}+\mathrm{3}\:>\:\mathrm{1}\right) \\ $$$$\mathrm{log}\:\mathrm{2}{x}+\mathrm{3}\:>\:\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{log}\:{x}^{\mathrm{2}} \:<\:\mathrm{log}\:\mathrm{2}{x}+\mathrm{3} \\ $$$$\Rightarrow\:\mathrm{log}\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}{x}+\mathrm{3}}\:<\:\mathrm{0} \\ $$$$\Rightarrow\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}{x}+\mathrm{3}}\:<\:\mathrm{1} \\ $$$$\Rightarrow\:{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{3}\:<\:\mathrm{0} \\ $$$$\Rightarrow\:{x}\:\in\:\left(−\mathrm{1},\mathrm{3}\right) \\ $$$${x}\:>\:−\mathrm{1}\:\Rightarrow\:{x}\:\in\:\left(−\mathrm{1},\:\mathrm{3}\right) \\ $$$$\mathrm{putting}\:\mathrm{together}: \\ $$$${x}\:\in\:\left(−\frac{\mathrm{3}}{\mathrm{2}},\:\mathrm{3}\right)\:−\:\left\{−\mathrm{1}\right\} \\ $$
Commented by Tinkutara last updated on 21/Sep/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *