Menu Close

Solve-log-2x-3-x-2-lt-1-




Question Number 21357 by Tinkutara last updated on 21/Sep/17
Solve : log_(2x+3) x^2  < 1
Solve:log2x+3x2<1
Answered by dioph last updated on 21/Sep/17
2x + 3 > 0 ⇒ x > −(3/2)  2x + 3 ≠ 1 ⇒ x ≠ −1  ((log x^2 )/(log 2x+3)) < 1  Case 1: x < −1 (2x + 3 < 1)  log 2x + 3 < 0  ⇒ log x^2  > log 2x+3  ⇒ log (x^2 /(2x+3)) > 0  ⇒ (x^2 /(2x+3)) > 1  ⇒ x^2   −2x − 3 > 0  ⇒ x ∈ (−∞,−1) ∪ (3, +∞)  but x < −1 ⇒ x ∈ (−∞,−1)  Case 2: x > −1 (2x+3 > 1)  log 2x+3 > 0  ⇒ log x^2  < log 2x+3  ⇒ log (x^2 /(2x+3)) < 0  ⇒ (x^2 /(2x+3)) < 1  ⇒ x^2 −2x−3 < 0  ⇒ x ∈ (−1,3)  x > −1 ⇒ x ∈ (−1, 3)  putting together:  x ∈ (−(3/2), 3) − {−1}
2x+3>0x>322x+31x1logx2log2x+3<1Case1:x<1(2x+3<1)log2x+3<0logx2>log2x+3logx22x+3>0x22x+3>1x22x3>0x(,1)(3,+)butx<1x(,1)Case2:x>1(2x+3>1)log2x+3>0logx2<log2x+3logx22x+3<0x22x+3<1x22x3<0x(1,3)x>1x(1,3)puttingtogether:x(32,3){1}
Commented by Tinkutara last updated on 21/Sep/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *