Question Number 172076 by Mikenice last updated on 23/Jun/22
$${solve} \\ $$$${log}\left(\mathrm{64}\sqrt[{\mathrm{24}}]{\mathrm{2}^{{x}^{\mathrm{2}} −\mathrm{40}{x}} }\right)=\mathrm{0} \\ $$
Answered by puissant last updated on 23/Jun/22
$$\Rightarrow{log}\mathrm{64}+\frac{\mathrm{1}}{\mathrm{24}}\left({x}^{\mathrm{2}} −\mathrm{40}{x}\right){log}\mathrm{2}=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{6}{log}\mathrm{2}=\frac{{log}\mathrm{2}}{\mathrm{24}}\left(\mathrm{40}{x}−{x}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:{x}^{\mathrm{2}} −\mathrm{40}{x}+\mathrm{144}=\mathrm{0} \\ $$$$\Delta=\mathrm{1024}\:\Rightarrow\:\sqrt{\Delta}=\mathrm{32}. \\ $$$${x}_{\mathrm{1}} =\frac{\mathrm{40}−\mathrm{32}}{\mathrm{2}}\:=\:\mathrm{4}\:\:;\:\:{x}_{\mathrm{2}} =\frac{\mathrm{40}+\mathrm{32}}{\mathrm{2}}=\mathrm{36}. \\ $$
Answered by mr W last updated on 23/Jun/22
$$\mathrm{64}×\sqrt[{\mathrm{24}}]{\mathrm{2}^{{x}^{\mathrm{2}} −\mathrm{40}} }=\mathrm{1} \\ $$$$\mathrm{2}^{\mathrm{6}} ×\mathrm{2}^{\frac{{x}^{\mathrm{2}} −\mathrm{40}{x}}{\mathrm{24}}} =\mathrm{1} \\ $$$$\mathrm{2}^{\frac{{x}^{\mathrm{2}} −\mathrm{40}{x}}{\mathrm{24}}+\mathrm{6}} =\mathrm{1} \\ $$$$\frac{{x}^{\mathrm{2}} −\mathrm{40}{x}}{\mathrm{24}}+\mathrm{6}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{40}{x}+\mathrm{144}=\mathrm{0} \\ $$$${x}=\mathrm{20}\pm\mathrm{16}=\mathrm{4}\:{or}\:\mathrm{36} \\ $$