Menu Close

solve-log-x-10-log-x-2-10-6-




Question Number 171847 by Mikenice last updated on 21/Jun/22
solve:  log_x 10+log_x^2  10=6
$${solve}: \\ $$$${log}_{{x}} \mathrm{10}+{log}_{{x}^{\mathrm{2}} } \mathrm{10}=\mathrm{6} \\ $$
Commented by kaivan.ahmadi last updated on 21/Jun/22
log_x 10+(1/2)log_x 10=6⇒(3/2)log_x 10=6⇒  log_x 10=4⇒x^4 =10⇒x=((10))^(1/4)
$${log}_{{x}} \mathrm{10}+\frac{\mathrm{1}}{\mathrm{2}}{log}_{{x}} \mathrm{10}=\mathrm{6}\Rightarrow\frac{\mathrm{3}}{\mathrm{2}}{log}_{{x}} \mathrm{10}=\mathrm{6}\Rightarrow \\ $$$${log}_{{x}} \mathrm{10}=\mathrm{4}\Rightarrow{x}^{\mathrm{4}} =\mathrm{10}\Rightarrow{x}=\sqrt[{\mathrm{4}}]{\mathrm{10}} \\ $$
Answered by cherokeesay last updated on 21/Jun/22
⇔((ln10)/(lnx))+((ln10)/(2lnx))=6        (x>0)  ((3ln10)/(2lnx))=6⇔10=x^4 ⇔  x_1 =((10))^(1/4) ,  x_2 =((10))^(1/4) i
$$\Leftrightarrow\frac{{ln}\mathrm{10}}{{lnx}}+\frac{{ln}\mathrm{10}}{\mathrm{2}{lnx}}=\mathrm{6}\:\:\:\:\:\:\:\:\left({x}>\mathrm{0}\right) \\ $$$$\frac{\mathrm{3}{ln}\mathrm{10}}{\mathrm{2}{lnx}}=\mathrm{6}\Leftrightarrow\mathrm{10}={x}^{\mathrm{4}} \Leftrightarrow \\ $$$${x}_{\mathrm{1}} =\sqrt[{\mathrm{4}}]{\mathrm{10}},\:\:{x}_{\mathrm{2}} =\sqrt[{\mathrm{4}}]{\mathrm{10}}{i} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *