Menu Close

Solve-on-R-R-the-following-system-9-A-9-B-9-C-1-3-A-3-B-3-C-3-




Question Number 79127 by ~blr237~ last updated on 22/Jan/20
 Solve  on R∗R  the following system  {_(9^A +9^B +9^C =1) ^(3^A +3^B +3^C =(√3))
SolveonRRthefollowingsystem{9A+9B+9C=13A+3B+3C=3
Commented by jagoll last updated on 23/Jan/20
because x>0 , y>0 and z>0
becausex>0,y>0andz>0
Commented by jagoll last updated on 23/Jan/20
x+y+z=(√3)(xy+xz+yz)  x(y(√3)−1)+y(z(√3)−1)+z(x(√3)−1)=0  ⇒y(√3)−1=0  z(√3)−1=0  x(√3)−1=0
x+y+z=3(xy+xz+yz)x(y31)+y(z31)+z(x31)=0y31=0z31=0x31=0
Commented by jagoll last updated on 23/Jan/20
9^a +9^b +9^c =(3^a +3^b +3^c )^2 −2(3^(a+b) +3^(a+c) +3^(b+c) )  1=3−2(3^(a+b) +3^(a+c) +3^(b+c) )  3^(a+b) +3^(a+c) +3^(b+c) =1
9a+9b+9c=(3a+3b+3c)22(3a+b+3a+c+3b+c)1=32(3a+b+3a+c+3b+c)3a+b+3a+c+3b+c=1
Commented by jagoll last updated on 23/Jan/20
let 3^a =x , 3^b =y , 3^c =z  xy+xz+yz=1  x+y+z=(√3)  x^2 +y^2 +z^2 =1
let3a=x,3b=y,3c=zxy+xz+yz=1x+y+z=3x2+y2+z2=1
Commented by jagoll last updated on 23/Jan/20
x^2 −xy+y^2 −yz+z^2 −xz=0  x(x−y)+x(y−z)+z(z−x)=0
x2xy+y2yz+z2xz=0x(xy)+x(yz)+z(zx)=0
Commented by jagoll last updated on 23/Jan/20
x=y=z  x^2 +x^2 +x^2 =1 ⇒x=(1/( (√3)))  ∴ x=y=z=(1/( (√3)))
x=y=zx2+x2+x2=1x=13x=y=z=13
Commented by ~blr237~ last updated on 23/Jan/20
your explanation of  x=y=z is not clear sir   cause you don′t know if  x(y−z)>0 or same for the rest
yourexplanationofx=y=zisnotclearsircauseyoudontknowifx(yz)>0orsamefortherest
Commented by jagoll last updated on 23/Jan/20
impossible x(y−z)>0 sir.  because sum the three terms is   zero
impossiblex(yz)>0sir.becausesumthethreetermsiszero
Commented by ~blr237~ last updated on 23/Jan/20
you should prove that the three of them are positive before concluding
youshouldprovethatthethreeofthemarepositivebeforeconcluding
Commented by MJS last updated on 23/Jan/20
it must be R×R×R not R×R
itmustbeR×R×RnotR×R
Answered by ~blr237~ last updated on 23/Jan/20
let  find A=(3^A −(1/( (√3))))^2 +(3^B −(1/( (√3))))^2 +(3^C −(1/( (√3))))^2   A=(9^A −(2/( (√3)))3^A +(1/3))+(9^B −(2/( (√3)))3^B +(1/3))+(9^C −(2/( (√3)))3^C +(1/3))      = 9^A +9^B +9^C −(2/( (√3)))(3^A +3^B +3^C )+1     =1−2+1=0  such as each term of A is positive we got   3^A =3^B =3^C =(1/( (√3)))   Finaly  A=B=C=−(1/2)
letfindA=(3A13)2+(3B13)2+(3C13)2A=(9A233A+13)+(9B233B+13)+(9C233C+13)=9A+9B+9C23(3A+3B+3C)+1=12+1=0suchaseachtermofAispositivewegot3A=3B=3C=13FinalyA=B=C=12
Commented by jagoll last updated on 23/Jan/20
what wrong my answer?
whatwrongmyanswer?
Commented by ~blr237~ last updated on 23/Jan/20
we don′t know if  y(√3) −1>0 , even  z(√3)−1 and y(√3) −1  the proposition you want to is   when U≥0,V≥0  U+V=0 ⇒ U=0 and V=0  but you did verify if firstly  U,V ( there it′s  x(y(√3) −1) ,y(z(√3) −1),z(x(√3) −1) ) were positive
wedontknowify31>0,evenz31andy31thepropositionyouwanttoiswhenU0,V0U+V=0U=0andV=0butyoudidverifyiffirstlyU,V(thereitsx(y31),y(z31),z(x31))werepositive
Commented by MJS last updated on 23/Jan/20
A=(3^A −(1/( (√3))))^2 +(3^B −(1/( (√3))))^2 +(3^C −(1/( (√3))))^2   don′t do that, it′s confusing and simply wrong
A=(3A13)2+(3B13)2+(3C13)2dontdothat,itsconfusingandsimplywrong
Answered by MJS last updated on 23/Jan/20
3^A =x, 3^B =y, 3^C =z; x>0∧y>0∧z>0   { ((x+y+z=(√3))),((x^2 +y^2 +z^2 =1)) :}   { ((z=(√3)−(x+y))),((x^2 +xy+y^2 −(√3)x−(√3)y+1=0)) :}  let y=sx; x>0   { ((z=(√3)−(s+1)x)),((s^2 +((x−(√3))/x)s+((x^2 −(√3)x+1)/x^2 )=0)) :}  let s=t−((x−(√3))/(2x))   { ((z=((√3)/2)−(t+(1/2))x)),((t^2 =−(((3x−(√3))^2 )/(12x^2 )))) :}  ⇒ t=±(((√3)x−1)/(2x))i  ⇒ s=−((x−(√3))/(2x))±(((√3)x−1)/(2x))i  ⇒ y=−((x−(√3))/2)±(((√3)x−1)/2)i  ⇒ z=−((x−(√3))/2)∓(((√3)x−1)/2)i  ⇒ we only get a real solution if  (((√3)x−1)/2)=0 ⇒ x=((√3)/3)  ⇒ s=1∧t=0∧x=y=z=((√3)/3)  ⇒ A=B=C=−(1/2)
3A=x,3B=y,3C=z;x>0y>0z>0{x+y+z=3x2+y2+z2=1{z=3(x+y)x2+xy+y23x3y+1=0lety=sx;x>0{z=3(s+1)xs2+x3xs+x23x+1x2=0lets=tx32x{z=32(t+12)xt2=(3x3)212x2t=±3x12xis=x32x±3x12xiy=x32±3x12iz=x323x12iweonlygetarealsolutionif3x12=0x=33s=1t=0x=y=z=33A=B=C=12

Leave a Reply

Your email address will not be published. Required fields are marked *