Menu Close

Solve-on-Z-4-ax-b-0-4-a-b-Z-4-ax-2-bx-c-0-4-a-b-c-Z-4-




Question Number 14988 by 433 last updated on 06/Jun/17
Solve on Z_4    ax+b=[0]_4   a,b∈Z_4   ax^2 +bx+c=[0]_4   a,b,c∈Z_4
$${Solve}\:{on}\:\mathbb{Z}_{\mathrm{4}} \: \\ $$$${ax}+{b}=\left[\mathrm{0}\right]_{\mathrm{4}} \:\:{a},{b}\in\mathbb{Z}_{\mathrm{4}} \\ $$$${ax}^{\mathrm{2}} +{bx}+{c}=\left[\mathrm{0}\right]_{\mathrm{4}} \:\:{a},{b},{c}\in\mathbb{Z}_{\mathrm{4}} \\ $$
Commented by prakash jain last updated on 07/Jun/17
Are these to be solved as simultaneous  equations or these are 2 independent  equations.
$$\mathrm{Are}\:\mathrm{these}\:\mathrm{to}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{as}\:\mathrm{simultaneous} \\ $$$$\mathrm{equations}\:\mathrm{or}\:\mathrm{these}\:\mathrm{are}\:\mathrm{2}\:\mathrm{independent} \\ $$$$\mathrm{equations}. \\ $$
Commented by 433 last updated on 07/Jun/17
2 independent equations
$$\mathrm{2}\:{independent}\:{equations} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *