Menu Close

Solve-over-integer-a-3-2a-2-3a-4-b-c-




Question Number 173556 by dragan91 last updated on 13/Jul/22
  Solve over integer  a^3 +2a^2 +3a+4=b!+c!
Solveoverintegera3+2a2+3a+4=b!+c!
Answered by Rasheed.Sindhi last updated on 14/Jul/22
a^3 +2a^2 +3a+4=b!+c!  a^3 +2a^2 +3a+4−(b!+c!)=0  The equation is cubic  ∴ a has at most 3 integral values  for particular value of b & c.   Let α,β & γ  are the roots of the above equation.  α+β+γ=−2 , αβ+βγ+γα=3 ,  αβγ= b!+c!−4  .....  ....
a3+2a2+3a+4=b!+c!a3+2a2+3a+4(b!+c!)=0Theequationiscubicahasatmost3integralvaluesforparticularvalueofb&c.Letα,β&γaretherootsoftheaboveequation.α+β+γ=2,αβ+βγ+γα=3,αβγ=b!+c!4...
Commented by dragan91 last updated on 16/Jul/22
  a^3 +2a^2 +3a+4=b!+c!  (a+1)(a^2 +a+2)=b!+c!−2  since b!+c!−2≥0 ∀b,c∈N  ⇒(a+1)(a^2 +a+2)≥0⇒a≥−1   a^3 +2a^2 +3a+4 is never divisible by 3  then for 3≤b≤c and b!+c!=3   is no solution  a^3 +2a^2 +3a+4 could have solutions  for  1+c! (c≠2) or 2+c! (c≠1)  We have to consider  cases:  I)for fixed b!=1⇒b=0=1 c≠2  a)assume a≤c⇒c!≡0(mod a)  a^3 +2a^2 +3a+4=1+c!  a^3 +2a^2 +3a+3=c! /:a  a^2 +2a+3+^ (3/a)=((c!)/a)  LHS is integer for a={(−1,1,2,3)}  ⇒(a,b,c)={(−1,0,0),(−1,1,0),(−1,0,1)  (−1,1,1),(2,4,2),(2,2,4)}  b)assume c<a  c!<a!  a^3 +2a^2 +3a+3<a!  its true for a≥6  for a≥6 let a=6+k (k≥0)  (6+k)^3 +2(6+k)^2 +3(6+k)+3=c!  k^3 +20k^2 +35k+309=c!     LHS is not divisible by 2  for any inter ⇒ c=0 or c=1  ⇒k=−7 is no solution (k≥0)  c)a=0 no solution  II)For fixed b!=2⇒b=2  a^3 +2a^2 +3a+2=c!  a)c≥a ⇒c!≡0(mod a)  a^3 +2a^2 +3a+2=c!/:a  a^2 +2a+3a+(2/a)=((c!)/a)  LHS is integer for a={(−1,1,2)} which is  already checked solutions  b)c<a  a^3 +2a^2 +3a+2<a!  its true for a≥6⇒a=6+p p≥0  c<6+p  (6+p)^3 +2(6+p)^2 +3(6+p)+2=c!  p^3 +20p^2 +135p+308=c!  p^3 +3p^2 ∙7+3p∙49+343−(p^2 +12p+35)=c!  (p+7)^3 −(p+7)(p+5)=c!  p+7=t   t^3 −t(t−2)=c!  Since c<p+6⇒c<t−1<t  for t>1 c≢0(mod t)⇒c!≢0(mod t)  t^3 −t(t−2)≡0(mod t)  its only possible solution for t=1  c!=1^3 −1^2 +2⇒c=2   Its contradiction since c<t−1  c)a=0⇒c=2  (a,b,c)={(0,2,2)}                                                                                        All solutions  (a,b,c)={(−1,0,0),(−1,0,1),(−1,1,0),  (−1,1,1),(0,2,2),(2,2,4),(2,4,2)}
a3+2a2+3a+4=b!+c!(a+1)(a2+a+2)=b!+c!2sinceb!+c!20b,cN(a+1)(a2+a+2)0a1a3+2a2+3a+4isneverdivisibleby3thenfor3bcandb!+c!=3isnosolutiona3+2a2+3a+4couldhavesolutionsfor1+c!(c2)or2+c!(c1)Wehavetoconsidercases:I)forfixedb!=1b=0=1c2a)assumeacc!0(moda)a3+2a2+3a+4=1+c!a3+2a2+3a+3=c!/:aa2+2a+3+3a=c!aLHSisintegerfora={(1,1,2,3)}(a,b,c)={(1,0,0),(1,1,0),(1,0,1)(1,1,1),(2,4,2),(2,2,4)}b)assumec<ac!<a!a3+2a2+3a+3<a!itstruefora6fora6leta=6+k(k0)(6+k)3+2(6+k)2+3(6+k)+3=c!k3+20k2+35k+309=c!LHSisnotdivisibleby2foranyinterc=0orc=1k=7isnosolution(k0)c)a=0nosolutionII)Forfixedb!=2b=2a3+2a2+3a+2=c!a)cac!0(moda)a3+2a2+3a+2=c!/:aa2+2a+3a+2a=c!aLHSisintegerfora={(1,1,2)}whichisalreadycheckedsolutionsb)c<aa3+2a2+3a+2<a!itstruefora6a=6+pp0c<6+p(6+p)3+2(6+p)2+3(6+p)+2=c!p3+20p2+135p+308=c!p3+3p27+3p49+343(p2+12p+35)=c!(p+7)3(p+7)(p+5)=c!p+7=tt3t(t2)=c!Sincec<p+6c<t1<tfort>1c0(modt)c!0(modt)t3t(t2)0(modt)itsonlypossiblesolutionfort=1c!=1312+2c=2Itscontradictionsincec<t1c)a=0c=2(a,b,c)={(0,2,2)}Allsolutions(a,b,c)={(1,0,0),(1,0,1),(1,1,0),(1,1,1),(0,2,2),(2,2,4),(2,4,2)}
Commented by dragan91 last updated on 15/Jul/22
yes. but equation has more solution wuth this conditions. αβγ=b!+c!−4  has infinite solutions.
yes.butequationhasmoresolutionwuththisconditions.αβγ=b!+c!4hasinfinitesolutions.
Commented by Rasheed.Sindhi last updated on 16/Jul/22
α+β+γ=−2 ∧ αβ+βγ+γα=3     ⇒ αβγ may have multiple values.    Some other solutions of the equation:  (a,b,c)=(−1,0,1),(−1,1,0),(−1,1,1),  (2,2,4),(2,4,2),...
α+β+γ=2αβ+βγ+γα=3αβγmayhavemultiplevalues.Someothersolutionsoftheequation:(a,b,c)=(1,0,1),(1,1,0),(1,1,1),(2,2,4),(2,4,2),

Leave a Reply

Your email address will not be published. Required fields are marked *