Menu Close

solve-pi-2-pi-2-sin-R-2-r-2-2rR-cos-d-




Question Number 33759 by 33 last updated on 24/Apr/18
solve :    ∫_(−π/2) ^(π/2)   ((sin θ )/( (√( R^2  + r^2  − 2rR cos θ)))) dθ
solve:π/2π/2sinθR2+r22rRcosθdθ
Commented by MJS last updated on 24/Apr/18
∫((cos θ )/( (√( R^2  + r^2  − 2rRcos θ))))dθ=            R^2 +r^2 =p            −2rR=q  =∫((cos θ)/( (√(p+qcos θ))))dθ=            thanks to my friend Prof. H.E.            cos θ=(1/q)(p+qcos θ)−(p/q)  =∫(((1/q)(p+qcos θ)−(p/q))/( (√(p+qcos θ))))dθ=  =(1/q)∫((p+qcos θ)/( (√(p+qcos θ))))dθ−(p/q)∫(1/( (√(p+qcos θ))))dθ=  =(1/q)∫(√(p+qcos θ))dθ−(p/q)∫(1/( (√(p+qcos θ))))dθ=            sin^2  (θ/2)=((1−cos θ)/2)            cos θ=1−2sin^2  (θ/2)            p+qcos θ=p+q−2qsin^2  (θ/2)=            =(p+q)(1−((2q)/(p+q))sin^2  (θ/2))  =((√(p+q))/q)∫(√((1−((2q)/(p+q))sin^2  (θ/2))))dθ−((p(√(p+q)))/(q(p+q)))∫(1/( (√((1−((2q)/(p+q))sin^2  (θ/2))))))dθ            u=(x/2) → dx=2du  =((2(√(p+q)))/q)∫(√((1−((2q)/(p+q))sin^2  u)))du−((2p(√(p+q)))/(q(p+q)))∫(1/( (√((1−((2q)/(p+q))sin^2  u)))))du=            the first is an elliptic integral of the            2^(nd)  kind, the second one of the 1^(st)  kind            the notation follows, but it′s beyond            my understanding...  =((2(√(p+q)))/q)E(u∣((2q)/(p+q)))−((2p(√(p+q)))/(q(p+q)))F(u∣((2q)/(p+q)))=            u=(x/2)  =((2(√(p+q)))/q)(E((x/2)∣((2q)/(p+q)))−(p/(p+q))F((x/2)∣((2q)/(p+q))))
cosθR2+r22rRcosθdθ=R2+r2=p2rR=q=cosθp+qcosθdθ=thankstomyfriendProf.H.E.cosθ=1q(p+qcosθ)pq=1q(p+qcosθ)pqp+qcosθdθ==1qp+qcosθp+qcosθdθpq1p+qcosθdθ==1qp+qcosθdθpq1p+qcosθdθ=sin2θ2=1cosθ2cosθ=12sin2θ2p+qcosθ=p+q2qsin2θ2==(p+q)(12qp+qsin2θ2)=p+qq(12qp+qsin2θ2)dθpp+qq(p+q)1(12qp+qsin2θ2)dθu=x2dx=2du=2p+qq(12qp+qsin2u)du2pp+qq(p+q)1(12qp+qsin2u)du=thefirstisanellipticintegralofthe2ndkind,thesecondoneofthe1stkindthenotationfollows,butitsbeyondmyunderstanding=2p+qqE(u2qp+q)2pp+qq(p+q)F(u2qp+q)=u=x2=2p+qq(E(x22qp+q)pp+qF(x22qp+q))
Commented by prof Abdo imad last updated on 24/Apr/18
let put I =∫_(−(π/2)) ^(π/2)     ((cosθ)/( (√(R^2  +r^2  −2rR cosθ))))dθ  we have R^2  +r^2  −2rR cosθ  =R^2 ( 1+((r/R))^2 −2(r/R) cosθ   let put λ =(r/R)  I =(1/R) ∫_(−(π/2)) ^(π/2)     ((cosθ)/( (√(1+λ^2  −2λ cosθ))))dθ  tan((θ/2))=t ⇒ I =(1/R) ∫_(−1) ^1    (((1−t^2 )/(1+t^2 ))/( (√(1+λ^2  −2λ((1−t^2 )/(1+t^2 )))))) ((2dt)/(1+t^2 ))  I = (2/R) ∫_(−1) ^1   ((1−t^2 )/((1+t^2 )^2 ))    (√(1+t^2 ))(dt/( (√((1+λ^2 )(1+t^2 ) −2λ(1−t^2 )))))  = (2/R) ∫_(−1) ^1    ((1−t^2 )/((1+t^2 )^(3/2) ))  (dt/( (√(1+t^2  +λ^2  +λ^2 t^2 −2λ +2λt^2 ))))  = (2/R) ∫_(−1) ^1        (((1−t^2 )dt)/((1+t^2 )^(3/2)   (√(λ^2 −2λ +1  +(λ^2  +2λ+1)t^2 ))))  = (2/R) ∫_(−1) ^1       ((1−t^2 )/((1+t^2 )^(3/2) (√((λ−1)^2  +(λ+1)^2 t^2 ))))dt  ch.(λ+1)t=(λ−1) u give  I = (2/R) ∫_(−1) ^1        ((1 −(((λ−1)/(λ+1)) u)^2 )/((1+(((λ−1)/(λ+1))u)^2 )^(3/2) ))   (((λ−1)/(λ+1))/(∣λ−1∣(√(1+u^2 ))))du  after we use the ch.u=tanθ  or u =shθ...be  continued...
letputI=π2π2cosθR2+r22rRcosθdθwehaveR2+r22rRcosθ=R2(1+(rR)22rRcosθletputλ=rRI=1Rπ2π2cosθ1+λ22λcosθdθtan(θ2)=tI=1R111t21+t21+λ22λ1t21+t22dt1+t2I=2R111t2(1+t2)21+t2dt(1+λ2)(1+t2)2λ(1t2)=2R111t2(1+t2)32dt1+t2+λ2+λ2t22λ+2λt2=2R11(1t2)dt(1+t2)32λ22λ+1+(λ2+2λ+1)t2=2R111t2(1+t2)32(λ1)2+(λ+1)2t2dtch.(λ+1)t=(λ1)ugiveI=2R111(λ1λ+1u)2(1+(λ1λ+1u)2)32λ1λ+1λ11+u2duafterweusethech.u=tanθoru=shθbecontinued
Commented by 33 last updated on 24/Apr/18
To sir MJS , sir we cannot  consider a, b and c   as   constants as they are   dependent on cos θ .  and you do not know  a b c   as a function of α   and vice versa.
TosirMJS,sirwecannotconsidera,bandcasconstantsastheyaredependentoncosθ.andyoudonotknowabcasafunctionofαandviceversa.
Commented by MJS last updated on 24/Apr/18
you′re right
youreright
Commented by MJS last updated on 24/Apr/18
...this leads to an elliptic integral and it  might be impossible to exactly solve it
thisleadstoanellipticintegralanditmightbeimpossibletoexactlysolveit
Commented by 33 last updated on 24/Apr/18
what if there were sine   instead of cos in numerator?
whatifthereweresineinsteadofcosinnumerator?
Commented by MJS last updated on 24/Apr/18
then it′s easy  ∫((cos θ)/( (√(R^2 +r^2 −2Rrsin θ))))dθ=            u=R^2 +r^2 −2Rrsin θ            dx=−(1/(2rRcos θ))  −(1/(2rR))∫(1/( (√u)))du=−(1/(2rR))×2(√u)+C=−((√u)/(rR))+C=  =−((√(R^2 +r^2 −2Rrsin θ))/(rR))+C  ∫_(−(π/2)) ^(π/2) ((cos θ)/( (√(R^2 +r^2 −2Rrsin θ))))dθ=  =(((√(R^2 +r^2 +2rR))−(√(R^2 +r^2 −2rR)))/(rR))=  =(((√((R+r)^2 ))−(√((R−r)^2 )))/(rR))=  =((∣R+r∣−∣R−r∣)/(rR))=            if R>r ∧ R>0 ∧ r>0  =((R+r−(R−r))/(rR))=(2/R)
thenitseasycosθR2+r22Rrsinθdθ=u=R2+r22Rrsinθdx=12rRcosθ12rR1udu=12rR×2u+C=urR+C==R2+r22RrsinθrR+Cπ2π2cosθR2+r22Rrsinθdθ==R2+r2+2rRR2+r22rRrR==(R+r)2(Rr)2rR==R+rRrrR=ifR>rR>0r>0=R+r(Rr)rR=2R
Commented by MJS last updated on 24/Apr/18
sorry, I misread... but it′s the same way:  ∫((sin θ)/( (√(R^2 +r^2 −2Rrcos θ))))dθ=  =((√(R^2 +r^2 −2Rrcos θ))/(rR))+C  ∫_(−(π/2)) ^(π/2) ((sin θ)/( (√(R^2 +r^2 −2Rrcos θ))))dθ=0
sorry,Imisreadbutitsthesameway:sinθR2+r22Rrcosθdθ==R2+r22RrcosθrR+Cπ2π2sinθR2+r22Rrcosθdθ=0
Commented by prof Abdo imad last updated on 25/Apr/18
something went wrong becsuse θ→((sinθ)/( (√(R^2  +r^2  −2rR cosθ))))  is odd  ⇒∫_(−(π/2)) ^(π/2)  (...)dθ =0
somethingwentwrongbecsuseθsinθR2+r22rRcosθisoddπ2π2()dθ=0

Leave a Reply

Your email address will not be published. Required fields are marked *