Menu Close

solve-Q-0-1-ln-x-ln-2-x-dx-m-n-1970-




Question Number 151114 by mnjuly1970 last updated on 18/Aug/21
       solve....            Q := ∫_0 ^( 1) ln (x ). ln ( 2− x )dx =? ...........■                m.n.1970...
$$ \\ $$$$\:\:\:\:\:{solve}…. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Q}\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\:\left({x}\:\right).\:{ln}\:\left(\:\mathrm{2}−\:{x}\:\right){dx}\:=?\:………..\blacksquare \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:{m}.{n}.\mathrm{1970}… \\ $$$$ \\ $$
Answered by qaz last updated on 18/Aug/21
∫_0 ^1 lnxln(2−x)dx  =∫_0 ^1 (((xlnx)/(2−x))−ln(2−x))dx  =∫_2 ^1 ((2−u)/u)ln(2−u)du+1−2ln2  =2∫_2 ^1 ((ln(2−u))/u)du−∫_2 ^1 ln(2−u)du+1−2ln2  =2∫_2 ^1 ((ln2(1−(u/2)))/u)du+2−2ln2  =2∫_2 ^1 ((ln2+ln(1−(u/2)))/u)du+2−2ln2  =−2ln^2 2+2∫_1 ^(1/2) ((ln(1−u))/u)du+2−2ln2  =−2Li_2 (u)∣_1 ^(1/2) −2ln^2 2−2ln2+2  =(π^2 /3)−2Li_2 ((1/2))−2ln^2 2−2ln2+2  =(π^2 /6)−ln^2 2−2ln2+2
$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{lnxln}\left(\mathrm{2}−\mathrm{x}\right)\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{xlnx}}{\mathrm{2}−\mathrm{x}}−\mathrm{ln}\left(\mathrm{2}−\mathrm{x}\right)\right)\mathrm{dx} \\ $$$$=\int_{\mathrm{2}} ^{\mathrm{1}} \frac{\mathrm{2}−\mathrm{u}}{\mathrm{u}}\mathrm{ln}\left(\mathrm{2}−\mathrm{u}\right)\mathrm{du}+\mathrm{1}−\mathrm{2ln2} \\ $$$$=\mathrm{2}\int_{\mathrm{2}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{2}−\mathrm{u}\right)}{\mathrm{u}}\mathrm{du}−\int_{\mathrm{2}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{2}−\mathrm{u}\right)\mathrm{du}+\mathrm{1}−\mathrm{2ln2} \\ $$$$=\mathrm{2}\int_{\mathrm{2}} ^{\mathrm{1}} \frac{\mathrm{ln2}\left(\mathrm{1}−\frac{\mathrm{u}}{\mathrm{2}}\right)}{\mathrm{u}}\mathrm{du}+\mathrm{2}−\mathrm{2ln2} \\ $$$$=\mathrm{2}\int_{\mathrm{2}} ^{\mathrm{1}} \frac{\mathrm{ln2}+\mathrm{ln}\left(\mathrm{1}−\frac{\mathrm{u}}{\mathrm{2}}\right)}{\mathrm{u}}\mathrm{du}+\mathrm{2}−\mathrm{2ln2} \\ $$$$=−\mathrm{2ln}^{\mathrm{2}} \mathrm{2}+\mathrm{2}\int_{\mathrm{1}} ^{\mathrm{1}/\mathrm{2}} \frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{u}\right)}{\mathrm{u}}\mathrm{du}+\mathrm{2}−\mathrm{2ln2} \\ $$$$=−\mathrm{2Li}_{\mathrm{2}} \left(\mathrm{u}\right)\mid_{\mathrm{1}} ^{\mathrm{1}/\mathrm{2}} −\mathrm{2ln}^{\mathrm{2}} \mathrm{2}−\mathrm{2ln2}+\mathrm{2} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{3}}−\mathrm{2Li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)−\mathrm{2ln}^{\mathrm{2}} \mathrm{2}−\mathrm{2ln2}+\mathrm{2} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\mathrm{ln}^{\mathrm{2}} \mathrm{2}−\mathrm{2ln2}+\mathrm{2} \\ $$
Commented by mnjuly1970 last updated on 18/Aug/21
  excellent master qazi...
$$\:\:{excellent}\:{master}\:{qazi}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *