Menu Close

Solve-simultaneously-for-s-in-terms-of-a-and-b-h-2-b-k-2-s-2-i-h-2-a-2-k-2-b-2-1-ii-h-s-2-2-k-b-1-s-2-4a-2-s-2-i




Question Number 49755 by ajfour last updated on 10/Dec/18
Solve simultaneously for s in terms  of a and b.  h^2 +(b−k)^2 = s^2            .....(i)  (h^2 /a^2 )+(k^2 /b^2 ) = 1                       .....(ii)  (h−(s/2))^2 +(k+b(√(1−(s^2 /(4a^2 )))) )= s^2    ..(iii).
Solvesimultaneouslyforsintermsofaandb.h2+(bk)2=s2..(i)h2a2+k2b2=1..(ii)(hs2)2+(k+b1s24a2)=s2..(iii).
Answered by mr W last updated on 10/Dec/18
(ii)×a^2 :  h^2 +(a^2 /b^2 )k^2 =a^2     ...(iv)  (i)−(iv):  b^2 −2bk+k^2 −(a^2 /b^2 )k^2 =s^2 −a^2   (1−(a^2 /b^2 ))k^2 −2bk+(a^2 +b^2 −s^2 )=0  ⇒k=((b−b(√(1−(1−(a^2 /b^2 ))(1+(a^2 /b^2 )−(s^2 /b^2 )))))/((1−(a^2 /b^2 ))))        (only “−”?)  let λ=(a/b),δ=(s/b)  ⇒k=((b−b(√(1−(1−λ^2 )(1+λ^2 −δ^2 ))))/((1−λ^2 )))  ⇒(k/b)=((1−(√(1−(1−λ^2 )(1+λ^2 −δ^2 ))))/((1−λ^2 )))    (i)−(iii):  (s/2)(2h−(s/2))+(b−k+k+b(√(1−(s^2 /(4a^2 )))))(b−k−k+b(√(1−(s^2 /(4a^2 )))))=0  (s/2)(2h−(s/2))+b(1+(√(1−(s^2 /(4a^2 )))))(b+b(√(1−(s^2 /(4a^2 ))))−2k)=0  (s/2)(2h−(s/2))+b^2 (1+(√(1−(s^2 /(4a^2 )))))(1+(√(1−(s^2 /(4a^2 ))))−((2±2(√(1−(1−(a^2 /b^2 ))(1+(a^2 /b^2 )−(s^2 /b^2 )))))/((1−(a^2 /b^2 )))))=0  s(h−(s/4))+b^2 (1+(√(1−(δ^2 /(4λ^2 )))))(1+(√(1−(δ^2 /(4λ^2 ))))−((2−2(√(1−(1−λ^2 )(1+λ^2 −δ^2 ))))/((1−λ^2 ))))=0  (h/a)=(δ/(4λ))−(1/(λδ))(1+(√(1−(δ^2 /(4λ^2 )))))(1+(√(1−(δ^2 /(4λ^2 ))))−((2−2(√(1−(1−λ^2 )(1+λ^2 −δ^2 ))))/((1−λ^2 ))))=0  (ii):  ⇒{(δ/(4λ))−(1/(λδ))(1+(√(1−(δ^2 /(4λ^2 )))))(1+(√(1−(δ^2 /(4λ^2 ))))−((2−2(√(1−(1−λ^2 )(1+λ^2 −δ^2 ))))/((1−λ^2 ))))}^2 +{((1−(√(1−(1−λ^2 )(1+λ^2 −δ^2 ))))/((1−λ^2 )))}^2 =1  solve for δ in terms of λ.... (only nummerically possible)
(ii)×a2:h2+a2b2k2=a2(iv)(i)(iv):b22bk+k2a2b2k2=s2a2(1a2b2)k22bk+(a2+b2s2)=0k=bb1(1a2b2)(1+a2b2s2b2)(1a2b2)(only?)letλ=ab,δ=sbk=bb1(1λ2)(1+λ2δ2)(1λ2)kb=11(1λ2)(1+λ2δ2)(1λ2)(i)(iii):s2(2hs2)+(bk+k+b1s24a2)(bkk+b1s24a2)=0s2(2hs2)+b(1+1s24a2)(b+b1s24a22k)=0s2(2hs2)+b2(1+1s24a2)(1+1s24a22±21(1a2b2)(1+a2b2s2b2)(1a2b2))=0s(hs4)+b2(1+1δ24λ2)(1+1δ24λ2221(1λ2)(1+λ2δ2)(1λ2))=0ha=δ4λ1λδ(1+1δ24λ2)(1+1δ24λ2221(1λ2)(1+λ2δ2)(1λ2))=0(ii):{δ4λ1λδ(1+1δ24λ2)(1+1δ24λ2221(1λ2)(1+λ2δ2)(1λ2))}2+{11(1λ2)(1+λ2δ2)(1λ2)}2=1solveforδintermsofλ.(onlynummericallypossible)
Commented by ajfour last updated on 10/Dec/18
Thank you Sir, Any better alternative  for Q.49740 ?
ThankyouSir,AnybetteralternativeforQ.49740?
Commented by mr W last updated on 10/Dec/18
no sir! I have no better way.
nosir!Ihavenobetterway.

Leave a Reply

Your email address will not be published. Required fields are marked *