Question Number 49755 by ajfour last updated on 10/Dec/18
$${Solve}\:{simultaneously}\:{for}\:\boldsymbol{{s}}\:{in}\:{terms} \\ $$$${of}\:\boldsymbol{{a}}\:{and}\:\boldsymbol{{b}}. \\ $$$${h}^{\mathrm{2}} +\left({b}−{k}\right)^{\mathrm{2}} =\:{s}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:…..\left({i}\right) \\ $$$$\frac{{h}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{k}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:=\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…..\left({ii}\right) \\ $$$$\left({h}−\frac{{s}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({k}+{b}\sqrt{\mathrm{1}−\frac{{s}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }}\:\right)=\:{s}^{\mathrm{2}} \:\:\:..\left({iii}\right). \\ $$
Answered by mr W last updated on 10/Dec/18
$$\left({ii}\right)×{a}^{\mathrm{2}} : \\ $$$${h}^{\mathrm{2}} +\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }{k}^{\mathrm{2}} ={a}^{\mathrm{2}} \:\:\:\:…\left({iv}\right) \\ $$$$\left({i}\right)−\left({iv}\right): \\ $$$${b}^{\mathrm{2}} −\mathrm{2}{bk}+{k}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }{k}^{\mathrm{2}} ={s}^{\mathrm{2}} −{a}^{\mathrm{2}} \\ $$$$\left(\mathrm{1}−\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\right){k}^{\mathrm{2}} −\mathrm{2}{bk}+\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{s}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow{k}=\frac{{b}−{b}\sqrt{\mathrm{1}−\left(\mathrm{1}−\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\right)\left(\mathrm{1}+\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }−\frac{{s}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\right)}}{\left(\mathrm{1}−\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\right)}\:\:\:\:\:\:\:\:\left({only}\:“−''?\right) \\ $$$${let}\:\lambda=\frac{{a}}{{b}},\delta=\frac{{s}}{{b}} \\ $$$$\Rightarrow{k}=\frac{{b}−{b}\sqrt{\mathrm{1}−\left(\mathrm{1}−\lambda^{\mathrm{2}} \right)\left(\mathrm{1}+\lambda^{\mathrm{2}} −\delta^{\mathrm{2}} \right)}}{\left(\mathrm{1}−\lambda^{\mathrm{2}} \right)} \\ $$$$\Rightarrow\frac{{k}}{{b}}=\frac{\mathrm{1}−\sqrt{\mathrm{1}−\left(\mathrm{1}−\lambda^{\mathrm{2}} \right)\left(\mathrm{1}+\lambda^{\mathrm{2}} −\delta^{\mathrm{2}} \right)}}{\left(\mathrm{1}−\lambda^{\mathrm{2}} \right)} \\ $$$$ \\ $$$$\left({i}\right)−\left({iii}\right): \\ $$$$\frac{{s}}{\mathrm{2}}\left(\mathrm{2}{h}−\frac{{s}}{\mathrm{2}}\right)+\left({b}−{k}+{k}+{b}\sqrt{\mathrm{1}−\frac{{s}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }}\right)\left({b}−{k}−{k}+{b}\sqrt{\mathrm{1}−\frac{{s}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }}\right)=\mathrm{0} \\ $$$$\frac{{s}}{\mathrm{2}}\left(\mathrm{2}{h}−\frac{{s}}{\mathrm{2}}\right)+{b}\left(\mathrm{1}+\sqrt{\mathrm{1}−\frac{{s}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }}\right)\left({b}+{b}\sqrt{\mathrm{1}−\frac{{s}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }}−\mathrm{2}{k}\right)=\mathrm{0} \\ $$$$\frac{{s}}{\mathrm{2}}\left(\mathrm{2}{h}−\frac{{s}}{\mathrm{2}}\right)+{b}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\mathrm{1}−\frac{{s}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }}\right)\left(\mathrm{1}+\sqrt{\mathrm{1}−\frac{{s}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }}−\frac{\mathrm{2}\pm\mathrm{2}\sqrt{\mathrm{1}−\left(\mathrm{1}−\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\right)\left(\mathrm{1}+\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }−\frac{{s}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\right)}}{\left(\mathrm{1}−\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\right)}\right)=\mathrm{0} \\ $$$${s}\left({h}−\frac{{s}}{\mathrm{4}}\right)+{b}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\mathrm{1}−\frac{\delta^{\mathrm{2}} }{\mathrm{4}\lambda^{\mathrm{2}} }}\right)\left(\mathrm{1}+\sqrt{\mathrm{1}−\frac{\delta^{\mathrm{2}} }{\mathrm{4}\lambda^{\mathrm{2}} }}−\frac{\mathrm{2}−\mathrm{2}\sqrt{\mathrm{1}−\left(\mathrm{1}−\lambda^{\mathrm{2}} \right)\left(\mathrm{1}+\lambda^{\mathrm{2}} −\delta^{\mathrm{2}} \right)}}{\left(\mathrm{1}−\lambda^{\mathrm{2}} \right)}\right)=\mathrm{0} \\ $$$$\frac{{h}}{{a}}=\frac{\delta}{\mathrm{4}\lambda}−\frac{\mathrm{1}}{\lambda\delta}\left(\mathrm{1}+\sqrt{\mathrm{1}−\frac{\delta^{\mathrm{2}} }{\mathrm{4}\lambda^{\mathrm{2}} }}\right)\left(\mathrm{1}+\sqrt{\mathrm{1}−\frac{\delta^{\mathrm{2}} }{\mathrm{4}\lambda^{\mathrm{2}} }}−\frac{\mathrm{2}−\mathrm{2}\sqrt{\mathrm{1}−\left(\mathrm{1}−\lambda^{\mathrm{2}} \right)\left(\mathrm{1}+\lambda^{\mathrm{2}} −\delta^{\mathrm{2}} \right)}}{\left(\mathrm{1}−\lambda^{\mathrm{2}} \right)}\right)=\mathrm{0} \\ $$$$\left({ii}\right): \\ $$$$\Rightarrow\left\{\frac{\delta}{\mathrm{4}\lambda}−\frac{\mathrm{1}}{\lambda\delta}\left(\mathrm{1}+\sqrt{\mathrm{1}−\frac{\delta^{\mathrm{2}} }{\mathrm{4}\lambda^{\mathrm{2}} }}\right)\left(\mathrm{1}+\sqrt{\mathrm{1}−\frac{\delta^{\mathrm{2}} }{\mathrm{4}\lambda^{\mathrm{2}} }}−\frac{\mathrm{2}−\mathrm{2}\sqrt{\mathrm{1}−\left(\mathrm{1}−\lambda^{\mathrm{2}} \right)\left(\mathrm{1}+\lambda^{\mathrm{2}} −\delta^{\mathrm{2}} \right)}}{\left(\mathrm{1}−\lambda^{\mathrm{2}} \right)}\right)\right\}^{\mathrm{2}} +\left\{\frac{\mathrm{1}−\sqrt{\mathrm{1}−\left(\mathrm{1}−\lambda^{\mathrm{2}} \right)\left(\mathrm{1}+\lambda^{\mathrm{2}} −\delta^{\mathrm{2}} \right)}}{\left(\mathrm{1}−\lambda^{\mathrm{2}} \right)}\right\}^{\mathrm{2}} =\mathrm{1} \\ $$$${solve}\:{for}\:\delta\:{in}\:{terms}\:{of}\:\lambda….\:\left({only}\:{nummerically}\:{possible}\right) \\ $$
Commented by ajfour last updated on 10/Dec/18
$${Thank}\:{you}\:{Sir},\:{Any}\:{better}\:{alternative} \\ $$$${for}\:{Q}.\mathrm{49740}\:? \\ $$
Commented by mr W last updated on 10/Dec/18
$${no}\:{sir}!\:{I}\:{have}\:{no}\:{better}\:{way}. \\ $$