Solve-simultaneously-for-s-in-terms-of-a-and-b-h-2-b-k-2-s-2-i-h-2-a-2-k-2-b-2-1-ii-h-s-2-2-k-b-1-s-2-4a-2-s-2-i Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 49755 by ajfour last updated on 10/Dec/18 Solvesimultaneouslyforsintermsofaandb.h2+(b−k)2=s2…..(i)h2a2+k2b2=1…..(ii)(h−s2)2+(k+b1−s24a2)=s2..(iii). Answered by mr W last updated on 10/Dec/18 (ii)×a2:h2+a2b2k2=a2…(iv)(i)−(iv):b2−2bk+k2−a2b2k2=s2−a2(1−a2b2)k2−2bk+(a2+b2−s2)=0⇒k=b−b1−(1−a2b2)(1+a2b2−s2b2)(1−a2b2)(only“−″?)letλ=ab,δ=sb⇒k=b−b1−(1−λ2)(1+λ2−δ2)(1−λ2)⇒kb=1−1−(1−λ2)(1+λ2−δ2)(1−λ2)(i)−(iii):s2(2h−s2)+(b−k+k+b1−s24a2)(b−k−k+b1−s24a2)=0s2(2h−s2)+b(1+1−s24a2)(b+b1−s24a2−2k)=0s2(2h−s2)+b2(1+1−s24a2)(1+1−s24a2−2±21−(1−a2b2)(1+a2b2−s2b2)(1−a2b2))=0s(h−s4)+b2(1+1−δ24λ2)(1+1−δ24λ2−2−21−(1−λ2)(1+λ2−δ2)(1−λ2))=0ha=δ4λ−1λδ(1+1−δ24λ2)(1+1−δ24λ2−2−21−(1−λ2)(1+λ2−δ2)(1−λ2))=0(ii):⇒{δ4λ−1λδ(1+1−δ24λ2)(1+1−δ24λ2−2−21−(1−λ2)(1+λ2−δ2)(1−λ2))}2+{1−1−(1−λ2)(1+λ2−δ2)(1−λ2)}2=1solveforδintermsofλ….(onlynummericallypossible) Commented by ajfour last updated on 10/Dec/18 ThankyouSir,AnybetteralternativeforQ.49740? Commented by mr W last updated on 10/Dec/18 nosir!Ihavenobetterway. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: which-is-not-range-of-f-x-2x-1-x-2-1-2-2-3-3-10-4-2-3-Next Next post: Given-that-N-1-2-3-500-is-the-product-of-the-positive-integers-from-1-to-500-If-N-is-divisible-by-6-k-find-the-largest-possible-value-of-k- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.