Menu Close

Solve-simultaneously-x-2-y-2-61-equation-i-x-3-y-3-91-equation-ii-




Question Number 16600 by tawa tawa last updated on 24/Jun/17
Solve simultaneously  x^2  + y^2  = 61         .............. equation (i)  x^3  − y^3  = 91         .............. equation (ii)
Solvesimultaneouslyx2+y2=61..equation(i)x3y3=91..equation(ii)
Commented by prakash jain last updated on 24/Jun/17
x=(√(61))cos u,y=(√(61))sin u  61^(3/2) cos^3 u−61^(3/2) sin^3 u=91  (cos u−sin u)(cos^2 u+sin^2 u−cos usin u)         =((91)/(61^(3/2) ))  (cos u−sin u)(1−cos usin u)=.191  cos  ((π/4)−u)(2−sin 2u)=.191×2(√2)=.54  2cos ((π/4)−u)−cos ((π/4)−u)sin 2u=.54  continue
x=61cosu,y=61sinu613/2cos3u613/2sin3u=91(cosusinu)(cos2u+sin2ucosusinu)=91613/2(cosusinu)(1cosusinu)=.191cos(π4u)(2sin2u)=.191×22=.542cos(π4u)cos(π4u)sin2u=.54continue
Commented by tawa tawa last updated on 24/Jun/17
Am with you sir. God bless you sir.
Amwithyousir.Godblessyousir.
Commented by Tinkutara last updated on 24/Jun/17
Hit and trial method:  y^2  = 61 − x^2   Let x, y ∈ N.  Then y^2  = 60, 57, 52, 45, 36, 25, 12.  But x > y. So x = 6 and y = 5.
Hitandtrialmethod:y2=61x2Letx,yN.Theny2=60,57,52,45,36,25,12.Butx>y.Sox=6andy=5.
Commented by tawa tawa last updated on 24/Jun/17
Am with you sir. God bless you sir.
Amwithyousir.Godblessyousir.
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 26/Jun/17
Commented by mrW1 last updated on 26/Jun/17
geogebra is very powerful!
geogebraisverypowerful!
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 26/Jun/17
please correct your final answer  from :(6,−5)⇒(6,5).cxcuse me.
pleasecorrectyourfinalanswerfrom:(6,5)(6,5).cxcuseme.
Commented by mrW1 last updated on 26/Jun/17
certainly you are right. thanks!
certainlyyouareright.thanks!
Answered by mrW1 last updated on 26/Jun/17
x^2 +y^2 −2xy+2xy=61  (x−y)^2 +2xy=61  x^3 −y^3 =(x−y)(x^2 +xy+y^2 )=91  (x−y)(61+xy)=91    let u=x−y and v=xy  u^2 +2v=61   ...(1)  u(61+v)=91   ...(2)  v=((61−u^2 )/2)  u(61+((61−u^2 )/2))=91  u(((183−u^2 )/2))=91  u^3 −183u+182=0  (u−1)(u−13)(u+14)=0  ⇒u=(−14, 1, 13)  ⇒v=((61−(−14)^2 )/2)=−((135)/2)  ⇒v=((61−(1)^2 )/2)=30  ⇒v=((61−(13)^2 )/2)=−54  ⇒v=(−((135)/2), 30, −54)    x−y=u   ...(3)  xy=v  (x+y)^2 =(x−y)^2 +4xy=u^2 +4v=61+2v≥0  v≥−((61)/2)  ⇒for real roots the only solution is   u=1  v=30    x+y=±(√(61+2v))     ...(4)    from (3) and (4):  ⇒x=((u±(√(61+2v)))/2)  ⇒y=((−u±(√(61+2v)))/2)    with (u,v)=(1,30)  x=((1±(√(61+2×30)))/2)=((1±11)/2)=6,−5  y=((−1±(√(61+2×30)))/2)=((−1±11)/2)=5,−6    ⇒real solution is:  (x,y)=(6,5) or (−5,−6)
x2+y22xy+2xy=61(xy)2+2xy=61x3y3=(xy)(x2+xy+y2)=91(xy)(61+xy)=91letu=xyandv=xyu2+2v=61(1)u(61+v)=91(2)v=61u22u(61+61u22)=91u(183u22)=91u3183u+182=0(u1)(u13)(u+14)=0u=(14,1,13)v=61(14)22=1352v=61(1)22=30v=61(13)22=54v=(1352,30,54)xy=u(3)xy=v(x+y)2=(xy)2+4xy=u2+4v=61+2v0v612forrealrootstheonlysolutionisu=1v=30x+y=±61+2v(4)from(3)and(4):x=u±61+2v2y=u±61+2v2with(u,v)=(1,30)x=1±61+2×302=1±112=6,5y=1±61+2×302=1±112=5,6realsolutionis:(x,y)=(6,5)or(5,6)
Commented by tawa tawa last updated on 24/Jun/17
God bless you sir. i really appreciate.
Godblessyousir.ireallyappreciate.
Commented by tawa tawa last updated on 24/Jun/17
God bless you sir. i really appreciate.
Godblessyousir.ireallyappreciate.
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 25/Jun/17
perfect! & cxcellent.
perfect!&cxcellent.
Commented by RasheedSoomro last updated on 25/Jun/17
e^x cellent!
excellent!

Leave a Reply

Your email address will not be published. Required fields are marked *