Question Number 15975 by myintkhaing last updated on 16/Jun/17

Commented by tawa tawa last updated on 16/Jun/17
![sin2x + cos2x = 0 Note: sin2x = 2sinxcosx and cos2x = cos^2 x − sin^2 x 2sinxcosx + cos^2 x − sin^2 x = 0 cos^2 x = 1 − sin^2 x 2sinxcosx + 1 − sin^2 x − sin^2 x = 0 2sinxcosx + 1 − 2sin^2 x = 0 ∴ 2sin^2 x − 2sinxcosx − 1 = 0 ∴ 2sin^2 x − 2sinx(√(cos^2 x)) − 1 = 0 ∴ 2sin^2 x − 2sinx(√(1 − sin^2 x)) − 1 = 0 sinx = p ∴ 2p^2 − 2p(√(1 − p^2 )) − 1 = 0 ∴ 2p^2 − 1 = 2p(√(1 − p^2 )) Square both sides ∴ (2p^2 − 1)^2 = [2p(√(1 − p^2 ))]^2 ∴ (2p^2 − 1)(2p^2 − 1) = 4p^2 (1 − p^2 ) ∴ 4p^4 − 2p^2 − 2p^2 + 1 = 4p^2 − 4p^4 ∴ 4p^4 − 2p^2 − 2p^2 + 1 + 4p^4 − 4p^2 = 0 ∴ 8p^4 − 8p^2 + 1 = 0 ∴ 8(p^2 )^2 − 8p^2 + 1 = 0 a = 8, b = − 8, c = 1 p^2 = ((− b ± (√(b^2 − 4ac)))/(2a)) p^2 = ((− (−8) ± (√((−8)^2 − 4(8)(1))))/(2(8))) p^2 = ((8 ± (√(64 − 32)))/(16)) p^2 = ((8 ± (√(32)))/(16)) p^2 = 0.8536 or p^2 = 0.1465 p = ± (√(0.8536)) or p = ± (√(0.1465)) p = ± 0.9239 or p = ± 0.3828 sinx = ± 0.9239 or sinx = ± 0.3828 ∴ x = sin^(−1) (0.9239) or x = sin^(−1) (−0.9239) or x = sin^(−1) (0.3828) or x = sin^(−1) (−0.3828) ∴ x = 67.5 or x = − 67.5 or x = 22.5 or x = − 22.5 To find other angle in the range given. use: x = 180n° + (−1)^n sin^(−1) (α), where α = ± 67.5 or α = ± 22.5 and n = 0, 1, 2 ... Cancel anyone that is out of range.](https://www.tinkutara.com/question/Q15979.png)
Answered by mrW1 last updated on 16/Jun/17

Commented by myintkhaing last updated on 16/Jun/17

Commented by mrW1 last updated on 16/Jun/17

Commented by myintkhaing last updated on 16/Jun/17
