Menu Close

Solve-sin-2x-cos-2x-0-for-pi-lt-x-lt-pi-




Question Number 15975 by myintkhaing last updated on 16/Jun/17
Solve sin 2x + cos 2x =0,  for −π<x<π.
Solvesin2x+cos2x=0,forπ<x<π.
Commented by tawa tawa last updated on 16/Jun/17
sin2x + cos2x = 0  Note: sin2x = 2sinxcosx  and  cos2x = cos^2 x − sin^2 x  2sinxcosx + cos^2 x − sin^2 x = 0  cos^2 x = 1 − sin^2 x  2sinxcosx + 1 − sin^2 x − sin^2 x = 0  2sinxcosx + 1 − 2sin^2 x = 0  ∴ 2sin^2 x − 2sinxcosx − 1 = 0  ∴ 2sin^2 x − 2sinx(√(cos^2 x)) − 1 = 0  ∴ 2sin^2 x − 2sinx(√(1 − sin^2 x)) − 1 = 0  sinx = p  ∴  2p^2  − 2p(√(1 − p^2 )) − 1 = 0  ∴  2p^2  − 1 =  2p(√(1 − p^2 ))  Square both sides  ∴  (2p^2  − 1)^2  = [2p(√(1 − p^2 ))]^2   ∴  (2p^2  − 1)(2p^2  − 1) = 4p^2 (1 − p^2 )  ∴   4p^4  − 2p^2  − 2p^2  + 1 = 4p^2  − 4p^4   ∴   4p^4  − 2p^2  − 2p^2  + 1 + 4p^4  − 4p^2  = 0  ∴   8p^4  − 8p^2  + 1 = 0  ∴   8(p^2 )^2  − 8p^2  + 1 = 0  a = 8, b = − 8, c = 1  p^2  = ((− b ± (√(b^2  − 4ac)))/(2a))  p^2  = ((− (−8) ± (√((−8)^2  − 4(8)(1))))/(2(8)))  p^2  = ((8 ± (√(64 − 32)))/(16))  p^2  = ((8 ± (√(32)))/(16))  p^2  = 0.8536 or p^2  = 0.1465  p = ± (√(0.8536)) or p = ± (√(0.1465))  p = ± 0.9239   or p = ± 0.3828  sinx = ± 0.9239   or sinx = ± 0.3828  ∴ x = sin^(−1) (0.9239) or x = sin^(−1) (−0.9239) or x = sin^(−1) (0.3828) or x = sin^(−1) (−0.3828)  ∴ x = 67.5 or x = − 67.5 or x = 22.5 or x = − 22.5  To find other angle in the range given.  use:  x = 180n° + (−1)^n  sin^(−1) (α),      where  α = ± 67.5 or α = ± 22.5  and  n = 0, 1, 2 ...  Cancel anyone that is out of range.
sin2x+cos2x=0Note:sin2x=2sinxcosxandcos2x=cos2xsin2x2sinxcosx+cos2xsin2x=0cos2x=1sin2x2sinxcosx+1sin2xsin2x=02sinxcosx+12sin2x=02sin2x2sinxcosx1=02sin2x2sinxcos2x1=02sin2x2sinx1sin2x1=0sinx=p2p22p1p21=02p21=2p1p2Squarebothsides(2p21)2=[2p1p2]2(2p21)(2p21)=4p2(1p2)4p42p22p2+1=4p24p44p42p22p2+1+4p44p2=08p48p2+1=08(p2)28p2+1=0a=8,b=8,c=1p2=b±b24ac2ap2=(8)±(8)24(8)(1)2(8)p2=8±643216p2=8±3216p2=0.8536orp2=0.1465p=±0.8536orp=±0.1465p=±0.9239orp=±0.3828sinx=±0.9239orsinx=±0.3828x=sin1(0.9239)orx=sin1(0.9239)orx=sin1(0.3828)orx=sin1(0.3828)x=67.5orx=67.5orx=22.5orx=22.5Tofindotherangleintherangegiven.use:x=180n°+(1)nsin1(α),whereα=±67.5orα=±22.5andn=0,1,2Cancelanyonethatisoutofrange.
Answered by mrW1 last updated on 16/Jun/17
(√2)((1/( (√2)))sin 2x+(1/( (√2)))cos 2x)=0  (√2)(cos (π/4) sin 2x+sin (π/4) cos 2x)=0  (√2)sin (2x+(π/4))=0  sin (2x+(π/4))=0  ⇒2x+(π/4)=kπ,k∈Z  ⇒x=(1/2)(kπ−(π/4))  within (−π,π):  x=−((5π)/8),−(π/8),((3π)/8),((7π)/8)
2(12sin2x+12cos2x)=02(cosπ4sin2x+sinπ4cos2x)=02sin(2x+π4)=0sin(2x+π4)=02x+π4=kπ,kZx=12(kππ4)within(π,π):x=5π8,π8,3π8,7π8
Commented by myintkhaing last updated on 16/Jun/17
in 2^(nd)  line, not sin (π/2)
in2ndline,notsinπ2
Commented by mrW1 last updated on 16/Jun/17
my typo, it′s (π/4)
mytypo,itsπ4
Commented by myintkhaing last updated on 16/Jun/17
sin cos +cos sin
sincos+cossin

Leave a Reply

Your email address will not be published. Required fields are marked *