Menu Close

solve-sinz-2-zfromC-




Question Number 37296 by math khazana by abdo last updated on 11/Jun/18
solve sinz =2     zfromC
solvesinz=2zfromC
Commented by prof Abdo imad last updated on 17/Jun/18
sinz =2 ⇔((e^(iz)  −e^(−iz) )/2) =2 ⇔e^(iz)  −e^(−iz) =4⇒  let t =e^(iz)  ⇒t−(1/t)=4 ⇒t^2 −1=4t ⇒  t^2 −4t−1=0   Δ^′ =4 +1=5 ⇒ t_1 =2+(√5)   and t_2 =2−(√5)  e^(iz) =2+(√5)⇒iz =ln(2+(√5)) ⇒z=−iln(2+(√5))  e^(iz)  =2−(√5) ⇒iz =ln(2−(√5))  =ln(−1) +ln(−2 +(√5)) = iπ +ln(−2+(√5)) ⇒  z =π −iln(−2+(√5)) so the solutions for  this equation are  −iln(2+(√5)) and π −iln(−2+(√5)) .
sinz=2eizeiz2=2eizeiz=4lett=eizt1t=4t21=4tt24t1=0Δ=4+1=5t1=2+5andt2=25eiz=2+5iz=ln(2+5)z=iln(2+5)eiz=25iz=ln(25)=ln(1)+ln(2+5)=iπ+ln(2+5)z=πiln(2+5)sothesolutionsforthisequationareiln(2+5)andπiln(2+5).

Leave a Reply

Your email address will not be published. Required fields are marked *