Menu Close

solve-tan-1-2x-1-x-2-cot-1-1-x-2-2x-pi-3-




Question Number 27393 by kumar123 last updated on 06/Jan/18
solve  tan^(−1) (2x/1−x^2 )+cot^(−1) (1−x^2 /2x)=π/3
solvetan1(2x/1x2)+cot1(1x2/2x)=π/3
Answered by $@ty@m last updated on 06/Jan/18
Let x=tan  u  tan^(−1) ((2tan  u)/(1−tan^2 u))+cot^(−1) ((1−tan^2 u)/(2tan u))=(π/3)  tan^(−1) tan 2u+cot^(−1) cot  2u=(π/3)  2u+2u=(π/3)  4u=(π/3)  u=(π/(12))  tan^(−1) x=(π/(12))  x=tan (π/(12))  =2−(√3)
Letx=tanutan12tanu1tan2u+cot11tan2u2tanu=π3tan1tan2u+cot1cot2u=π32u+2u=π34u=π3u=π12tan1x=π12x=tanπ12=23

Leave a Reply

Your email address will not be published. Required fields are marked *