Question Number 54756 by Knight last updated on 10/Feb/19
$${solve} \\ $$$$\int{tan}\left({x}−\theta\right){tan}\left({x}+\theta\right){tan}\:\mathrm{2}{x}\:{dx} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 10/Feb/19
$${tan}\mathrm{2}{x}={tan}\left({x}+\theta+{x}−\theta\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{tan}\mathrm{2}{x}=\frac{{tan}\left({x}+\theta\right)+{tan}\left({x}−\theta\right)}{\mathrm{1}−{tan}\left({x}+\theta\right){tan}\left({x}−\theta\right)} \\ $$$${tan}\mathrm{2}{x}−{tan}\mathrm{2}{xtan}\left({x}+\theta\right){tan}\left({x}−\theta\right)={tan}\left({x}+\theta\right)+{tan}\left({x}−\theta\right) \\ $$$${tan}\mathrm{2}{x}−{tan}\left({x}+\theta\right)−{tan}\left({x}−\theta\right)={tan}\mathrm{2}{xtan}\left({x}+\theta\right){tan}\left({x}−\theta\right) \\ $$$${so}\:\int{tan}\left({x}−\theta\right){tan}\left({x}+\theta\right){tan}\mathrm{2}{xdx} \\ $$$$=\int\left[{tan}\mathrm{2}{x}−{tan}\left({x}+\theta\right)−{tan}\left({x}−\theta\right)\right]{dx} \\ $$$$\int{tan}\mathrm{2}{xdx}−\int{tan}\left({x}+\theta\right){dx}−\int{tan}\left({x}−\theta\right){dx} \\ $$$$=\frac{{ln}\left({sec}\mathrm{2}{x}\right)}{\mathrm{2}}−\frac{{lnsec}\left({x}+\theta\right)}{\mathrm{1}}−\frac{{lnsec}\left({x}−\theta\right)}{\mathrm{1}}+{c} \\ $$