Question Number 156684 by mathdave last updated on 14/Oct/21
$${solve}\:{the}\:{D}.{E}\: \\ $$$$\left[\mathrm{1}+{e}^{\frac{{x}}{{y}}} \right]{dx}+{e}^{\frac{{x}}{{y}}} \left[\mathrm{1}−\frac{{x}}{{y}}\right]{dy}=\mathrm{0} \\ $$$${any}\:{one}\:{can}\:{help}\:{pls} \\ $$
Answered by som(math1967) last updated on 14/Oct/21
$$\left[\mathrm{1}+{e}^{\frac{{x}}{{y}}} \right]{dx}={e}^{\frac{{x}}{{y}}} \left[\frac{{x}}{{y}}−\mathrm{1}\right]{dy} \\ $$$$\frac{{dx}}{{dy}}=\frac{{e}^{\frac{{x}}{{y}}} \left[\frac{{x}}{{y}}−\mathrm{1}\right]}{\left[\mathrm{1}+{e}^{\frac{{x}}{{y}}} \right]} \\ $$$${let}\:\frac{{x}}{{y}}={v} \\ $$$$\:{x}={vy} \\ $$$$\frac{{dx}}{{dy}}={v}+{y}\frac{{dv}}{{dy}} \\ $$$${v}+{y}\frac{{dv}}{{dy}}\:=\frac{{e}^{{v}} \left({v}−\mathrm{1}\right)}{\left(\mathrm{1}+{e}^{{v}} \right)} \\ $$$${y}\frac{{dv}}{{dy}}\:=\frac{{ve}^{{v}} −{e}^{{v}} −{v}−{ve}^{{v}} }{\left(\mathrm{1}+{e}^{{v}} \right)} \\ $$$${y}\frac{{dv}}{{dy}}=\:−\frac{\left({v}+{e}^{{v}} \right)}{\left(\mathrm{1}+{e}^{{v}} \right)} \\ $$$$\:\int\frac{\left(\mathrm{1}+{e}^{{v}} \right){dv}}{{v}+{e}^{{v}} }=\:−\int\frac{{dy}}{{y}} \\ $$$$\int\frac{{d}\left({v}+{e}^{{v}} \right)}{{v}+{e}^{{v}} }=−\int\frac{{dy}}{{y}} \\ $$$${ln}\mid{v}+{e}^{{v}} \mid=−{lny}+{lnC} \\ $$$${ln}\mid{v}+{e}^{{v}} \mid={ln}\frac{{C}}{{y}} \\ $$$${v}+{e}^{{v}} =\frac{{C}}{{y}} \\ $$$${y}\left(\frac{{x}}{{y}}\:+{e}^{\frac{{x}}{{y}}} \right)={C} \\ $$
Answered by mindispower last updated on 14/Oct/21
$$\frac{{x}}{{y}}={u}\Rightarrow{dx}={ydu}+{udy} \\ $$$$\Leftrightarrow\left(\mathrm{1}+{e}^{{u}} \right)\left({ydu}+{udy}\right)+{e}^{{u}} \left(\mathrm{1}−{u}\right){dy}=\mathrm{0} \\ $$$${y}\left(\mathrm{1}+{e}^{{u}} \right){du}+\left({u}+{e}^{{u}} \right){dy}=\mathrm{0} \\ $$$$\Rightarrow\frac{{dy}}{{y}}=−\frac{\mathrm{1}+{e}^{{u}} }{{u}+{e}^{{u}} }{du} \\ $$$$\Rightarrow{ln}\mid{y}\mid=−{ln}\left(\mid{u}+{e}^{{u}} \mid\right)+{c} \\ $$$$\Rightarrow{y}=\frac{{k}}{\mid{u}+{e}^{{u}} \mid} \\ $$$$\Rightarrow{y}\mid\frac{{x}}{{y}}+{e}^{\frac{{x}}{{y}}} \mid={k} \\ $$
Commented by peter frank last updated on 14/Oct/21
$$\mathrm{thank}\:\mathrm{you} \\ $$