Menu Close

Solve-the-d-e-using-method-of-variation-of-parameter-d-2-y-dx-2-3-dy-dx-2y-sin-e-x-




Question Number 47624 by Umar last updated on 12/Nov/18
Solve the d.e using method of variation  of parameter.     (d^2 y/dx^2 )+3(dy/dx)+2y=sin(e^x )
Solvethed.eusingmethodofvariationofparameter.d2ydx2+3dydx+2y=sin(ex)
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Nov/18
let  t=e^x   t=e^x   (dt/dx)=e^x =t    (dy/dx)=(dy/dt)×(dt/dx)=t(dy/dt)  (d/dx)((dy/dx))=(d/dt)(t(dy/dt))×(dt/dx)    =t×{t(d^2 y/dt^2 )+(dy/dt)}=t^2 (d^2 y/dt^2 )+t(dy/dt)  now  (d^2 y/dx^2 )+3(dy/dx)+2y=sin(e^x )  t^2 (d^2 y/dt^2 )+t(dy/dt)+3t(dy/dt)+2y=sin(t)  t^2 (d^2 y/dt^2 )+4t(dy/dt)+2y=sint  now  [θ(θ−1)+4θ+2]y=sint    θ=(d/dt)  for  C.F  θ^2 −θ+4θ+2=0  (θ+1)(θ+2)=0  θ=−1,−2  so C.F=C_1 e^(−t) +C_2 e^(−2t) →C_1 e^(−e^x ) +C_2 e^(−2e^x )   P.I  y=(1/(θ^2 +3θ+2))×sint  =((θ^2 +2−3θ)/((θ^2 +2+3θ)(θ^2 +2−3θ)))×sint  =((θ^2 +2−3θ)/((θ^2 +2)^2 −9θ^2 ))sint  =(1/((−1^2 +2)^2 −9(−1^2 )))×{−sint+2sint−cost}  =(1/(1+9))×{sint−cost}  =(1/(10))×{sin(e^x )−cos(e^x )}  so complete solution is  C_1  e^(−e^x ) +C_2 e^(−2e^x ) +(1/(10)){sin(e^x )−cos(e^x )}  pls check...
lett=ext=exdtdx=ex=tdydx=dydt×dtdx=tdydtddx(dydx)=ddt(tdydt)×dtdx=t×{td2ydt2+dydt}=t2d2ydt2+tdydtnowd2ydx2+3dydx+2y=sin(ex)t2d2ydt2+tdydt+3tdydt+2y=sin(t)t2d2ydt2+4tdydt+2y=sintnow[θ(θ1)+4θ+2]y=sintθ=ddtforC.Fθ2θ+4θ+2=0(θ+1)(θ+2)=0θ=1,2soC.F=C1et+C2e2tC1eex+C2e2exP.Iy=1θ2+3θ+2×sint=θ2+23θ(θ2+2+3θ)(θ2+23θ)×sint=θ2+23θ(θ2+2)29θ2sint=1(12+2)29(12)×{sint+2sintcost}=11+9×{sintcost}=110×{sin(ex)cos(ex)}socompletesolutionisC1eex+C2e2ex+110{sin(ex)cos(ex)}plscheck
Commented by Umar last updated on 12/Nov/18
thanks
thanks
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Nov/18
most welcome...
mostwelcome

Leave a Reply

Your email address will not be published. Required fields are marked *