Menu Close

solve-the-d-e-x-2-1-y-xy-x-2-e-x-




Question Number 28529 by abdo imad last updated on 26/Jan/18
solve the d.e. (x^2 −1)y^′ +xy= x^2 −e^x  .
solvethed.e.(x21)y+xy=x2ex.
Commented by abdo imad last updated on 28/Jan/18
h.e.  (x^2 −1)y^′  =−xy ⇒ (y^′ /y)= ((−x)/(x^2 −1))  ⇒ln∣y∣= ∫ (x/(1−x^2 ))dx  =((−1)/2)ln∣1−x^2 ∣  +c  =ln((1/( (√(∣1−x^2 ∣))))) +c ⇒y= (λ/( (√(∣1−x^2 ∣)))) let use mvc method  case1    ∣x∣<1 ⇒y= λ(1−x^2 )^(−(1/2))   y^′ = λ^′ (1−x^2 )^((−1)/2) +λx(1−x^2 )^((−3)/(2  ))      (e) ⇒  −λ^′ (1−x^2 )^(1/2) −λx (1−x^2 )^((−1)/2)  +λx(1−x^2 )^((−1)/2) =x^2  −e^x   ⇒ λ^′ (1−x^2 )^(1/2) = e^x  −x^2   ⇒ λ^′ =  (e^x  −x^2 )(1−x^2 )^((−1)/2)   ⇒  λ(x) =  ∫_. ^x    ((e^t  −t^2 )/( (√(1−t^2 ))))dt  +k   and  y(x)= (1/( (√(1−x^2 ))))(   ∫_. ^x    ((e^t  −t^2 )/( (√(1−t^2 ))))dt  +k)  .
h.e.(x21)y=xyyy=xx21lny∣=x1x2dx=12ln1x2+c=ln(11x2)+cy=λ1x2letusemvcmethodcase1x∣<1y=λ(1x2)12y=λ(1x2)12+λx(1x2)32(e)λ(1x2)12λx(1x2)12+λx(1x2)12=x2exλ(1x2)12=exx2λ=(exx2)(1x2)12λ(x)=.xett21t2dt+kandy(x)=11x2(.xett21t2dt+k).
Commented by abdo imad last updated on 28/Jan/18
for case 2  ∣x∣ >1 we folow the same method.
forcase2x>1wefolowthesamemethod.

Leave a Reply

Your email address will not be published. Required fields are marked *