Menu Close

solve-the-d-e-y-2xy-sinx-e-x-2-with-initial-condition-y-o-1-




Question Number 27801 by abdo imad last updated on 14/Jan/18
solve the d.e.  y^′  −2xy =sinx e^x^2   with initial condition  y(o)=1.
solvethed.e.y2xy=sinxex2withinitialconditiony(o)=1.
Commented by abdo imad last updated on 19/Jan/18
he ⇒ y^′ −2xy=0 ⇔   (y^′ /y)=2x  ⇔  ln/y/ = x^2  +k  ⇔  y= λ e^x^2      let use the m.v.c method  y^′ = λ^′  e^x^2   +2λx e^x^2    and  (e) ⇔  λ^′  e^x^2   +2λx e^x^2   −2λx e^x^2  = sinx e^x^2    ⇔ λ^′  =sinx  ⇔   λ = ∫sinxdx +k =−cosx +k and  y(x)= (−cosx +k)e^x^2    y(0)=1 ⇒k−1=1 ⇒k=2  finally   y(x)= (2−cosx)e^x^2    .
hey2xy=0yy=2xln/y/=x2+ky=λex2letusethem.v.cmethody=λex2+2λxex2and(e)λex2+2λxex22λxex2=sinxex2λ=sinxλ=sinxdx+k=cosx+kandy(x)=(cosx+k)ex2y(0)=1k1=1k=2finallyy(x)=(2cosx)ex2.

Leave a Reply

Your email address will not be published. Required fields are marked *