Menu Close

solve-the-diff-eq-y-y-4y-4y-e-x-




Question Number 91010 by jagoll last updated on 27/Apr/20
solve the diff eq   y′′′−y′′+4y′−4y= e^x
solvethediffeqyy+4y4y=ex
Commented by john santu last updated on 27/Apr/20
the characteristic equation   w^3 −w^2 +4w −4 = 0  with roots are w = 1, ± 2i  complementary solution  y_c  = K_1 e^x +K_2 cos 2x+K_3 sin 2x  particular solution  y_p  = Qxe^x +Re^x   y′= Qxe^x +(Q+R)e^x   y′′= Qxe^x +(2Q+R)e^x   y′′′ = Qxe^x +(3Q+R)e^x   comparing coeff  y′′′−y′′+4y′−4y = 5Qe^x = e^x   Q = (1/5)  general solution   y = (1/5)xe^x +K_1 e^x +K_2 cos 2x+K_3 sin 2x
thecharacteristicequationw3w2+4w4=0withrootsarew=1,±2icomplementarysolutionyc=K1ex+K2cos2x+K3sin2xparticularsolutionyp=Qxex+Rexy=Qxex+(Q+R)exy=Qxex+(2Q+R)exy=Qxex+(3Q+R)excomparingcoeffyy+4y4y=5Qex=exQ=15generalsolutiony=15xex+K1ex+K2cos2x+K3sin2x
Commented by jagoll last updated on 27/Apr/20
thank you both
thankyouboth
Answered by MWSuSon last updated on 27/Apr/20
Auxillary equation  m^3 −4m^2 +4m−4=0  (m−1)(m^2 +4)=0  m=1,±i2  y_c =C_1 e^x +C_2 cos (2x)+C_3 sin (2x)  y_p =(1/(D^3 −D^2 +4D−4))e^x   =(1/(1−1+4−4))e^x  which is undefinded  so y_p =x(1/(3D^2 −2D+4))e^x   y_p =x(1/(3−2+4))e^x =((xe^x )/5)  y=C_1 e^x +C_2 cos (2x)+C_3 sin (2x)+((xe^x )/5)
Auxillaryequationm34m2+4m4=0(m1)(m2+4)=0m=1,±i2yc=C1ex+C2cos(2x)+C3sin(2x)yp=1D3D2+4D4ex=111+44exwhichisundefindedsoyp=x13D22D+4exyp=x132+4ex=xex5y=C1ex+C2cos(2x)+C3sin(2x)+xex5

Leave a Reply

Your email address will not be published. Required fields are marked *