Menu Close

solve-the-differencial-equation-1-x-2-y-xy-1-




Question Number 27594 by abdo imad last updated on 10/Jan/18
solve the  differencial equation  (1−x^2 )y^′  −xy =1   .
solvethedifferencialequation(1x2)yxy=1.
Commented by abdo imad last updated on 12/Jan/18
e.h⇒(1−x^2 )y^′ −xy=0⇔ (1−x^2 )y^, =xy   ⇔ (y^′ /y) = (x/(1−x^2 ))  ⇔ ln/y/= ∫(x/(1−x^2 ))dx +k  ln/y/=−(1/2) ln/1−x^2 / +k  = ln((1/( (√(/1−x^2 )) )))+k  ⇒ y=(λ/( (√(/1−x^2 /)))) let find λ by mvc method  if −1<x<1    y=  λ(1−x^2 )^(−(1/2))  so  y^′ =λ^, (1−x^2 )^(−(1/2)) −(1/2)λ(−2x)(1−x^2 )^(−(3/2))   = λ^′ (1−x^2 )^(−(1/2))  +λx(1−x^2 )^(−(3/2))   equ.⇔(1−x^2 )λ^′ (1−x^2 )^(−(1/2))  +λx(1−x^2 )(1−x^2 )^(−(3/2))  −λx (1−x^2 )^(−(1/2)) =1  λ′(√(1−x^2 )) =1  ⇒  λ^′ = (1/( (√(1−x^2 ))))  ⇒  λ= ∫  (dx/( (√(1−x^2 )))) +c  λ=arcsinx +c   and  y(x)=(1/( (√( 1−x^2 ))))( arcsinx +c)  y(x)= ((arcsinx)/( (√(1−x^2 )))) +(c/( (√(1 −x^2 ))))   .  if  1−x^2  <0 ⇔/x/ >1   y= (λ/( (√( x^2 −1)))) and the same method   give the result.
e.h(1x2)yxy=0(1x2)y,=xyyy=x1x2ln/y/=x1x2dx+kln/y/=12ln/1x2/+k=ln(1/1x2)+ky=λ/1x2/letfindλbymvcmethodif1<x<1y=λ(1x2)12soy=λ,(1x2)1212λ(2x)(1x2)32=λ(1x2)12+λx(1x2)32equ.(1x2)λ(1x2)12+λx(1x2)(1x2)32λx(1x2)12=1λ1x2=1λ=11x2λ=dx1x2+cλ=arcsinx+candy(x)=11x2(arcsinx+c)y(x)=arcsinx1x2+c1x2.if1x2<0/x/>1y=λx21andthesamemethodgivetheresult.

Leave a Reply

Your email address will not be published. Required fields are marked *