solve-the-differencial-equation-1-x-2-y-xy-1- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 27594 by abdo imad last updated on 10/Jan/18 solvethedifferencialequation(1−x2)y′−xy=1. Commented by abdo imad last updated on 12/Jan/18 e.h⇒(1−x2)y′−xy=0⇔(1−x2)y,=xy⇔y′y=x1−x2⇔ln/y/=∫x1−x2dx+kln/y/=−12ln/1−x2/+k=ln(1/1−x2)+k⇒y=λ/1−x2/letfindλbymvcmethodif−1<x<1y=λ(1−x2)−12soy′=λ,(1−x2)−12−12λ(−2x)(1−x2)−32=λ′(1−x2)−12+λx(1−x2)−32equ.⇔(1−x2)λ′(1−x2)−12+λx(1−x2)(1−x2)−32−λx(1−x2)−12=1λ′1−x2=1⇒λ′=11−x2⇒λ=∫dx1−x2+cλ=arcsinx+candy(x)=11−x2(arcsinx+c)y(x)=arcsinx1−x2+c1−x2.if1−x2<0⇔/x/>1y=λx2−1andthesamemethodgivetheresult. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: derive-x-2-x-Next Next post: find-D-xy-x-2-y-2-dxdy-with-D-x-y-R-2-x-2-2y-2-1-x-0-y-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.