Menu Close

solve-the-differential-equation-D-2-2D-1-y-x-2-2x-1-




Question Number 26073 by gopikrishnan005@gmail.com last updated on 19/Dec/17
  solve the differential equation(D^2 +2D+1)y=x^2 +2x+1
solvethedifferentialequation(D2+2D+1)y=x2+2x+1
Commented by gopikrishnan005@gmail.com last updated on 20/Dec/17
pls explain
plsexplain
Commented by abdo imad last updated on 21/Dec/17
⇔  (d^2 y/dx^2 )  +2(dy/dx)  +y =x^2 +2x+1  the solution of this ED is  y_g   = y_h  +y_p   .. y_h   is the homogen s^t   and y_p   particular s^t   EH−−> (d^2 y/dx^2 ) + 2(dy/dx)  +1 =0 have the caracteristic equation  x^2  +2x +1=0⇔  (x+1)^2 =0⇔ x=−1⇒  y_h   =(αx+β)e^(−x)  (−1 is double root)  for y_p   we put y=ax^4  +bx^3  +cx^2  +dx +e⇒  (dy/dx)= 4ax^3 + 3bx^2  +2cx +d  and  (d^2 y/dx^2 )  = 12ax^2 +6bx +2c  we find after calculus  a=0..b=0...c=1..d=−2...e=3  and y_g   =(αx+β)e^(−x)   +x^2  −2x +3  .
d2ydx2+2dydx+y=x2+2x+1thesolutionofthisEDisyg=yh+yp..yhisthehomogenstandypparticularstEH>d2ydx2+2dydx+1=0havethecaracteristicequationx2+2x+1=0(x+1)2=0x=1yh=(αx+β)ex(1isdoubleroot)forypweputy=ax4+bx3+cx2+dx+edydx=4ax3+3bx2+2cx+dandd2ydx2=12ax2+6bx+2cwefindaftercalculusa=0..b=0c=1..d=2e=3andyg=(αx+β)ex+x22x+3.

Leave a Reply

Your email address will not be published. Required fields are marked *