solve-the-differential-equation-D-2-2D-1-y-x-2-2x-1- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 26073 by gopikrishnan005@gmail.com last updated on 19/Dec/17 solvethedifferentialequation(D2+2D+1)y=x2+2x+1 Commented by gopikrishnan005@gmail.com last updated on 20/Dec/17 plsexplain Commented by abdo imad last updated on 21/Dec/17 ⇔d2ydx2+2dydx+y=x2+2x+1thesolutionofthisEDisyg=yh+yp..yhisthehomogenstandypparticularstEH−−>d2ydx2+2dydx+1=0havethecaracteristicequationx2+2x+1=0⇔(x+1)2=0⇔x=−1⇒yh=(αx+β)e−x(−1isdoubleroot)forypweputy=ax4+bx3+cx2+dx+e⇒dydx=4ax3+3bx2+2cx+dandd2ydx2=12ax2+6bx+2cwefindaftercalculusa=0..b=0…c=1..d=−2…e=3andyg=(αx+β)e−x+x2−2x+3. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-the-value-of-2-3-2-1-2-3-4-3-4-2-2-3-4-5-2013-2014-2-2012-2013-2014-2015-Next Next post: Question-91608 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.