Menu Close

Solve-the-differential-equation-for-the-function-given-by-U-x-t-U-t-2-2-U-x-2-0-lt-x-lt-pi-U-0-t-0-U-pi-t-0-t-gt-0-U-x-0-25x-




Question Number 183761 by MikeH last updated on 29/Dec/22
Solve the differential equation for the function  given by U(x,t).   { (((∂U/∂t) = 2(∂^2 U/∂x^2 ) , 0 < x < π)),((U(0,t) = 0, U(π,t) = 0, t > 0)) :}                  U(x,0) = 25x
SolvethedifferentialequationforthefunctiongivenbyU(x,t).{Ut=22Ux2,0<x<πU(0,t)=0,U(π,t)=0,t>0U(x,0)=25x
Answered by leodera last updated on 18/May/23
take fourier sine transform of both sides    F_s {(∂u/∂t)} = 2F_s {(∂^2 u/∂x^2 )}  let u_s ^−  = ∫_0 ^π u(x,t)sin (sx)dx  (d/dt)u_s ^−  = 2[−s^2 u_s ^−  + s{u(0,t) − (−1)^s u(π,t)}]  (d/dt)u_s ^−  = −2s^2 u_s ^−   solving the D.E  u_s ^−  = Ae^(−2s^2 t)   but u_s ^− (s,0) = ∫_0 ^π 25xsin (sx)dx                          = −((25π)/s)cos (sπ)  u_s ^− (s,0) = Ae^(−2s^2 ×0)  = −((25π)/s)cos (sπ)  ∴ A = −((25π)/s)cos (sπ)     ∴ u_s ^− (s,t) = −((25π)/s)cos (sπ)e^(−2s^2 t)     taking inverse fourier transform  F^− {u_s ^− (s,t)} = u(x,t) = (2/π)Σ_(s=1) ^∞ −((25π)/s)cos (sπ)e^(−2s^2 t) sin (sx)  u(x,t) = −50Σ_(s=1) ^∞ (((−1)^s )/s)e^(−2p^2 t) sin (sx)
takefouriersinetransformofbothsidesFs{ut}=2Fs{2ux2}letus=0πu(x,t)sin(sx)dxddtus=2[s2us+s{u(0,t)(1)su(π,t)}]ddtus=2s2ussolvingtheD.Eus=Ae2s2tbutus(s,0)=0π25xsin(sx)dx=25πscos(sπ)us(s,0)=Ae2s2×0=25πscos(sπ)A=25πscos(sπ)us(s,t)=25πscos(sπ)e2s2ttakinginversefouriertransformF{us(s,t)}=u(x,t)=2πs=125πscos(sπ)e2s2tsin(sx)u(x,t)=50s=1(1)sse2p2tsin(sx)

Leave a Reply

Your email address will not be published. Required fields are marked *