Menu Close

solve-the-differential-equation-L-d-2-q-dt-2-R-dq-dt-1-C-q-cos-t-which-is-in-R-L-C-circuit-with-forced-oscillation-where-L-is-inductance-R-is-resistance-C-is-capacitanace-q-is-charge-is-motion-




Question Number 95600 by Tony Lin last updated on 26/May/20
solve the differential equation  L(d^2 q/dt^2 )+R(dq/dt)+(1/C)q=εcosωt  which is in R.L.C circuit with forced oscillation  where L is inductance  R is resistance  C is capacitanace  q is charge  ε is motion emf  t is time
solvethedifferentialequationLd2qdt2+Rdqdt+1Cq=εcosωtwhichisinR.L.CcircuitwithforcedoscillationwhereLisinductanceRisresistanceCiscapacitanaceqischargeεismotionemftistime
Answered by mathmax by abdo last updated on 26/May/20
we take q=x and L =δ  so (e)⇒δx^(′′)  +r x^′  +cx =ξcos(wt) (c=(1/C))  let solve by laplace transform ⇒  δL(x^(′′) )+rL(x^′ )+cL(x) =ξL(cos(wt)) ⇒  δ(t^2 L(x)−tx(0)−x^′ (0))+r(tL(x)−x(0))+cL(x) =ξL(cos(wt)) ⇒  (δt^2 +rt +c)L(x)−δt x(0)−δx^′ (0)−rx(0) =ξL(cos(wt)  L(cos(wt) =∫_0 ^∞  cos(wu)e^(−tu)  du  =Re(∫_0 ^∞  e^(iwu−tu) du) but  ∫_0 ^∞  e^((iw−t)u)  du =[(1/(iw−t)) e^((−t+iw)u) ]_0 ^∞   =−(1/(iw−t)) =(1/(t−iw)) =((t+iw)/(t^2  +w^2 )) ⇒L(cos(wt)) =(t/(t^2  +w^2 )) ⇒  (δt^2  +rt +c)L(x) =((ξt)/(t^2  +w^2 )) +(δt +r)x(0)+δx^′ (0) ⇒  L(x) =((ξt)/((t^2  +w^2 )(δt^2  +rt +c))) +((δt +r)/(δt^2  +rt +c))x(0) +((δx^′ (0))/(δt^2  +rt +c)) ⇒  x(t) =ξL^(−1) ((1/((t^2  +w^2 )(δt^2  +rt +c)))) +L^(−1) (((δt +r)/(δt^2  +rt +c))x(0))  +L^(−1) ( ((δx^′ (0))/(δt^2  +rt +c)))  δt^2  +rt +c =0→Δ =r^2 −4δc  if Δ>0 ⇒t_1 =((−r +(√(r^2 −4δc)))/(2δ)) and t_2 =((−r−(√(r^2 −4δc)))/(2δ)) ⇒  ((δx^′ (0))/(δt^2 +rt +c)) =((x^′ (0))/((t−t_1 )(t−t_2 ))) =δ((x^′ (0))/( (√(r^2 −4δc))))((1/(t−t_1 ))−(1/(t−t_2 ))) ⇒  L^(−1) (....) =((δx^′ (0))/( (√(r^2 −4δc)))){ L^(−1) ((1/(t−t_1 )))−L^(−1) ((1/(t−t_2 )))}  =((δx^′ (0))/( (√(r^2 −4δc)))){e^(t_1 t) −e^(t_2 t) }...be continued....
wetakeq=xandL=δso(e)δx+rx+cx=ξcos(wt)(c=1C)letsolvebylaplacetransformδL(x)+rL(x)+cL(x)=ξL(cos(wt))δ(t2L(x)tx(0)x(0))+r(tL(x)x(0))+cL(x)=ξL(cos(wt))(δt2+rt+c)L(x)δtx(0)δx(0)rx(0)=ξL(cos(wt)L(cos(wt)=0cos(wu)etudu=Re(0eiwutudu)but0e(iwt)udu=[1iwte(t+iw)u]0=1iwt=1tiw=t+iwt2+w2L(cos(wt))=tt2+w2(δt2+rt+c)L(x)=ξtt2+w2+(δt+r)x(0)+δx(0)L(x)=ξt(t2+w2)(δt2+rt+c)+δt+rδt2+rt+cx(0)+δx(0)δt2+rt+cx(t)=ξL1(1(t2+w2)(δt2+rt+c))+L1(δt+rδt2+rt+cx(0))+L1(δx(0)δt2+rt+c)δt2+rt+c=0Δ=r24δcifΔ>0t1=r+r24δc2δandt2=rr24δc2δδx(0)δt2+rt+c=x(0)(tt1)(tt2)=δx(0)r24δc(1tt11tt2)L1(.)=δx(0)r24δc{L1(1tt1)L1(1tt2)}=δx(0)r24δc{et1tet2t}becontinued.
Commented by mathmax by abdo last updated on 26/May/20
wroskien method  (e) ⇒x^(′′)  +(r/δ)x^′  +(c/δ) x =(ξ/δ)cos(wt)  (he)→r^2  +(r/δ)r +(c/δ) =0 →Δ =(r^2 /δ^2 ) −((4c)/δ)   if Δ>0  ⇒r_1 =((−(r/δ)+(√Δ))/2)  and r_2 =((−(r/δ)−(√Δ))/2)  y_h =αe^(r_1 t)  +β e^(r_2 t)  =αu_1 +βu_2   W(u_1 ,u_2 ) = determinant (((u_1        u_2 )),((u_1 ^′         u_2 ^′ ))) = determinant (((e^(r_1 t)            e^(r_2 t)  )),((r_1 e^(r_1 t)    r_2 e^(r_2 t) )))  =(r_2 −r_1 )e^((r_1 +r_2 )t)   =(√Δ)e^(−(r/δ)t)   W_1 = determinant (((0                           e^(r_2 t ) )),(((ξ/δ)cos(wt)    r_2 e^(r_2 t) )))=−(ξ/δ)cos(wt)e^(r_2 t)   W_2 = determinant (((e^(r_1 t)               0)),((r_1 e^(r_1 t)        (ξ/δ)cos(wt))))=(ξ/δ)cos(wt)e^(r_1 t)   v_1 =∫  (w_1 /W)dt =−(ξ/δ)∫  ((cos(wt)e^(r_2 t) )/( (√Δ)e^(−(r/δ)t) )) =−(ξ/(δ(√Δ))) ∫ cos(wt)e^((r_2 +(r/δ))t) dt  =−(ξ/(δ(√Δ)))Re(∫  e^(iwt+(r_2 +(r/δ))t) dt)=....  v_2 =∫ (w_2 /W)dt =(ξ/(δ(√Δ)))∫   ((cos(wt)e^(r_1 t) )/e^(−(r/δ)) ) dt =(ξ/(δ(√Δ))) ∫ cos(wt)e^((r_1 +(r/δ))t)  dt  ... ⇒y_p =u_1 v_1  +u_2 v_2  and y =y_h  +y_p
wroskienmethod(e)x+rδx+cδx=ξδcos(wt)(he)r2+rδr+cδ=0Δ=r2δ24cδifΔ>0r1=rδ+Δ2andr2=rδΔ2yh=αer1t+βer2t=αu1+βu2W(u1,u2)=|u1u2u1u2|=|er1ter2tr1er1tr2er2t|=(r2r1)e(r1+r2)t=ΔerδtW1=|0er2tξδcos(wt)r2er2t|=ξδcos(wt)er2tW2=|er1t0r1er1tξδcos(wt)|=ξδcos(wt)er1tv1=w1Wdt=ξδcos(wt)er2tΔerδt=ξδΔcos(wt)e(r2+rδ)tdt=ξδΔRe(eiwt+(r2+rδ)tdt)=.v2=w2Wdt=ξδΔcos(wt)er1terδdt=ξδΔcos(wt)e(r1+rδ)tdtyp=u1v1+u2v2andy=yh+yp
Commented by Tony Lin last updated on 26/May/20
thanks sir
thankssir
Commented by mathmax by abdo last updated on 27/May/20
you are welcome sir.
youarewelcomesir.

Leave a Reply

Your email address will not be published. Required fields are marked *