Question Number 90307 by niroj last updated on 22/Apr/20

Answered by TANMAY PANACEA. last updated on 22/Apr/20
![x^2 (d^2 y/dx^2 )−2y=x^2 +(1/x) x=e^t (dy/dx)=(dy/dt)×(dt/dx)=(1/e^t )(dy/dt) (d/dx)((dy/dx))=(d/dt)((1/e^t )×(dy/dt))×(dt/dx)=(1/e^t )[(1/e^t )×(d^2 y/dt^2 )−(1/e^t )×(dy/dt)] (e^t )^2 (d^2 y/dx^2 )=(d^2 y/dt^2 )−(dy/dt) x^2 (d^2 y/dx^2 )=(d^2 y/dt^2 )−(dy/dt) so (d^2 y/dt^2 )−(dy/dt)−2y=e^(2t) +e^(−t) let y=e^(mt) (m^2 −m−2)e^(mt) =0 for C.F (m−2)(m+1)=0 C.F=Ae^(2t) +Be^(−t) =Ax^2 +(B/x) P.I let (d/dt)=θ y=((e^(2t) +e^(−t) )/((θ^2 −θ−2)))=((x^2 +(1/x))/((θ−2)(θ+1)))=(1/3)×(((θ+1)−(θ−2))/((θ−2)(θ+1)))×(x^2 +(1/x)) =(1/3)[(1/(θ−2))−(1/(θ+1))](x^2 +(1/x)) =(1/3)×[x^2 ∫x^(−2−1) (x^2 +(1/x))dx−x^(−1) ∫x^(1−1) (x^2 +(1/x))dx] =(1/3)[x^2 ∫((1/x)+(1/x^4 ))dx−(1/x)∫(x^2 +(1/x))dx] =(1/3)[x^2 ×lnx+x^2 ×(1/(x^3 ×(−3)))−(1/x)×(x^3 /3)−(1/x)lnx] =((x^2 lnx)/3)−(1/9)×(1/x)−(x^2 /9)−((lnx)/(3x)) =(x^2 −(1/x))×((lnx)/3)−(1/9)(x^2 +(1/x)) y=Ax^2 +(B/x)+((x^2 lnx)/3)−((lnx)/(3x))−(x^2 /9)−(1/(9x)) y=C_1 x^2 +(C_2 /x)+((x^2 lnx)/3)−((lnx)/(3x))](https://www.tinkutara.com/question/Q90313.png)
Commented by niroj last updated on 22/Apr/20

Commented by TANMAY PANACEA. last updated on 22/Apr/20

Commented by niroj last updated on 23/Apr/20
