Menu Close

Solve-the-differential-equation-x-2-D-2-2-y-x-2-1-x-




Question Number 90307 by niroj last updated on 22/Apr/20
  Solve the differential equation.     (x^2 D^2 −2)y = x^2  + (1/x).
Solvethedifferentialequation.(x2D22)y=x2+1x.
Answered by TANMAY PANACEA. last updated on 22/Apr/20
x^2 (d^2 y/dx^2 )−2y=x^2 +(1/x)  x=e^t   (dy/dx)=(dy/dt)×(dt/dx)=(1/e^t )(dy/dt)  (d/dx)((dy/dx))=(d/dt)((1/e^t )×(dy/dt))×(dt/dx)=(1/e^t )[(1/e^t )×(d^2 y/dt^2 )−(1/e^t )×(dy/dt)]  (e^t )^2 (d^2 y/dx^2 )=(d^2 y/dt^2 )−(dy/dt)  x^2 (d^2 y/dx^2 )=(d^2 y/dt^2 )−(dy/dt)  so  (d^2 y/dt^2 )−(dy/dt)−2y=e^(2t) +e^(−t)   let y=e^(mt)   (m^2 −m−2)e^(mt) =0   for C.F  (m−2)(m+1)=0  C.F=Ae^(2t) +Be^(−t) =Ax^2 +(B/x)  P.I  let (d/dt)=θ  y=((e^(2t) +e^(−t) )/((θ^2 −θ−2)))=((x^2 +(1/x))/((θ−2)(θ+1)))=(1/3)×(((θ+1)−(θ−2))/((θ−2)(θ+1)))×(x^2 +(1/x))  =(1/3)[(1/(θ−2))−(1/(θ+1))](x^2 +(1/x))  =(1/3)×[x^2 ∫x^(−2−1) (x^2 +(1/x))dx−x^(−1) ∫x^(1−1) (x^2 +(1/x))dx]  =(1/3)[x^2 ∫((1/x)+(1/x^4 ))dx−(1/x)∫(x^2 +(1/x))dx]  =(1/3)[x^2 ×lnx+x^2 ×(1/(x^3 ×(−3)))−(1/x)×(x^3 /3)−(1/x)lnx]  =((x^2 lnx)/3)−(1/9)×(1/x)−(x^2 /9)−((lnx)/(3x))  =(x^2 −(1/x))×((lnx)/3)−(1/9)(x^2 +(1/x))  y=Ax^2 +(B/x)+((x^2 lnx)/3)−((lnx)/(3x))−(x^2 /9)−(1/(9x))  y=C_1 x^2 +(C_2 /x)+((x^2 lnx)/3)−((lnx)/(3x))
x2d2ydx22y=x2+1xx=etdydx=dydt×dtdx=1etdydtddx(dydx)=ddt(1et×dydt)×dtdx=1et[1et×d2ydt21et×dydt](et)2d2ydx2=d2ydt2dydtx2d2ydx2=d2ydt2dydtsod2ydt2dydt2y=e2t+etlety=emt(m2m2)emt=0forC.F(m2)(m+1)=0C.F=Ae2t+Bet=Ax2+BxP.Iletddt=θy=e2t+et(θ2θ2)=x2+1x(θ2)(θ+1)=13×(θ+1)(θ2)(θ2)(θ+1)×(x2+1x)=13[1θ21θ+1](x2+1x)=13×[x2x21(x2+1x)dxx1x11(x2+1x)dx]=13[x2(1x+1x4)dx1x(x2+1x)dx]=13[x2×lnx+x2×1x3×(3)1x×x331xlnx]=x2lnx319×1xx29lnx3x=(x21x)×lnx319(x2+1x)y=Ax2+Bx+x2lnx3lnx3xx2919xy=C1x2+C2x+x2lnx3lnx3x
Commented by niroj last updated on 22/Apr/20
I apriciate your trying effort but    Answer should make sure    y= C_1 x^(−1) +C_2 x^2 +(1/3)x^2 log x−(1/(3x))log x.
IapriciateyourtryingeffortbutAnswershouldmakesurey=C1x1+C2x2+13x2logx13xlogx.
Commented by TANMAY PANACEA. last updated on 22/Apr/20
i have corrected...using Daniel and murry diff  cal book
ihavecorrectedusingDanielandmurrydiffcalbook
Commented by niroj last updated on 23/Apr/20
 now done dear .
nowdonedear.

Leave a Reply

Your email address will not be published. Required fields are marked *