Menu Close

Solve-the-differential-equation-x-t-2x-t-x-t-1-t-using-the-method-of-variation-of-parameters-




Question Number 107995 by Ar Brandon last updated on 13/Aug/20
Solve the differential equation;  x′′(t)+2x′(t)+x(t)=1+t  (using the method of variation of parameters)
Solvethedifferentialequation;x(t)+2x(t)+x(t)=1+t(usingthemethodofvariationofparameters)
Answered by Ar Brandon last updated on 13/Aug/20
x_(GH) : r^2 +2r+1=0 , (r+1)^2 =0, r_1 =−1=r_2   ⇒x_(GH) =(At+B)e^(−t) =Ate^(−t) +Be^(−t)   By varying the parameters,   Let x_P =A(t)te^(−t) +B(t)e^(−t)    { ((A′(t)(te^(−t) )+B′(t)(e^(−t) )=0),(eqn(1))),((A′(t)(te^(−t) )′+B′(t)(e^(−t) )′=1+t),(eqn(2))) :}  eqn(2)⇒A′(t)(e^(−t) −te^(−t) )−B′(t)(e^(−t) )=1+t  ⇒−[A′(t)(te^(−t) )+B′(t)e^(−t) ]+A′(t)e^(−t) =1+t⇒A′(t)=e^t +te^t   ⇒A(t)=∫(1+t)e^t dt=(1+t)e^t −e^t +k=te^t +k  A(t) in eqn(1)⇒B′(t)=−A′(t)t⇒B(t)=−∫A′(t)tdt  ⇒−B(t)=t∫A′(t)dt−∫{(dt/dt)∫A′(t)dt}dt  ⇒B(t)=−t(te^t +k)+∫(te^t +k)dt  ⇒B(t)=−t(te^t +k)+[te^t −e^t ]+kt+c  ⇒B(t)=−t^2 e^t +te^t −e^t +c  ⇒x_P =(te^t +k)te^(−t) +(−t^2 e^t +te^t −e^t +c)e^(−t)   ⇒x_P =t^2 +kte^(−t) −t^2 +t−1+ce^(−t) =t−1+(kt+c)e^(−t)   ⇒x_G =(At+B)e^(−t) +t−1+(kt+c)e^(−t)   ⇒x_G =(αt+β)e^(−t) +t−1 , α=A+k , β=B+c
xGH:r2+2r+1=0,(r+1)2=0,r1=1=r2xGH=(At+B)et=Atet+BetByvaryingtheparameters,LetxP=A(t)tet+B(t)et{A(t)(tet)+B(t)(et)=0eqn(1)A(t)(tet)+B(t)(et)=1+teqn(2)eqn(2)A(t)(ettet)B(t)(et)=1+t[A(t)(tet)+B(t)et]+A(t)et=1+tA(t)=et+tetA(t)=(1+t)etdt=(1+t)etet+k=tet+kA(t)ineqn(1)B(t)=A(t)tB(t)=A(t)tdtB(t)=tA(t)dt{dtdtA(t)dt}dtB(t)=t(tet+k)+(tet+k)dtB(t)=t(tet+k)+[tetet]+kt+cB(t)=t2et+tetet+cxP=(tet+k)tet+(t2et+tetet+c)etxP=t2+ktett2+t1+cet=t1+(kt+c)etxG=(At+B)et+t1+(kt+c)etxG=(αt+β)et+t1,α=A+k,β=B+c
Answered by Aziztisffola last updated on 13/Aug/20
x′′(t)+2x′(t)+x(t)=0 ⇒r^2 +2r+1=0   (r+1)^2 =0 ⇒r=−1  x_h (t)=(αt+β)e^(−t) =αte^(−t) +βe^(−t)   x_p (t)=u_1 te^(−t) +u_2 e^(−t)   w= determinant (((te^(−t) ),e^(−t) ),(((1−t)e^(−t) ),(−e^(−t) )))=−te^(−2t) −(1−t)e^(−2t)   =(−t−1+t)e^(−2t) =−e^(−2t)    w_1 = determinant ((0,e^(−t) ),((1+t),(−e^(−t) )))=−e^(−t) (1+t)   w_2 = determinant (((te^(−t) ),0),(((1−t)e^(−t) ),(1+t)))=(1+t)te^(−t)    u_1 =∫(w_1 /w)dt=∫(1+t)e^t dt   u_2 =∫(w_2 /w)dt=−∫(1+t)te^t dt   x_p (t)=te^(−t) ∫(1+t)e^t dt−e^(−t) ∫(1+t)te^t dt   x(t)=x_h (t)+x_p (t)
x(t)+2x(t)+x(t)=0r2+2r+1=0(r+1)2=0r=1xh(t)=(αt+β)et=αtet+βetxp(t)=u1tet+u2etw=|tetet(1t)etet|=te2t(1t)e2t=(t1+t)e2t=e2tw1=|0et1+tet|=et(1+t)w2=|tet0(1t)et1+t|=(1+t)tetu1=w1wdt=(1+t)etdtu2=w2wdt=(1+t)tetdtxp(t)=tet(1+t)etdtet(1+t)tetdtx(t)=xh(t)+xp(t)
Commented by Ar Brandon last updated on 13/Aug/20
Thanks
Answered by mathmax by abdo last updated on 14/Aug/20
laplace method   e ⇒L(y^(′′) )+2L(y^′ )+L(y) =L(1+t) ⇒  t^2 L(y)−ty(o)−y^′ (0)+2(t L(y)−y(0))+L(y) =L(1+t)  ⇒(t^2 +2t +1)L(y) =ty(o)+2y(o)+y^′ (0)+L(1+t) ⇒  (t^2  +2t+1)L(y) =(t+2)y(o) +y^′ (0) +L(1+t) but  L(1+t) =∫_0 ^∞  (1+x)e^(−tx) dx  =∫_0 ^∞  e^(−tx) dx+∫_0 ^∞  xe^(−tx) dx  =[−(1/t)e^(−tx) ]_(x=0) ^∞  +[−(x/t)e^(−tx) ]_(x=0) ^∞ +(1/t)∫_0 ^∞   e^(−tx) dx  =(1/t) +(1/t)[−(1/t)e^(−tx) ]_(x=0) ^∞  =(1/t)+(1/t^2 )  e ⇒(t^2  +2t+1)L(y)=y(0)(t+2)+y^′ (0)+(1/t)+(1/t^2 ) ⇒  ⇒L(y) =y(0).((t+2)/((t+1)^2 )) +y^′ (0)(1/((t+1)^2 )) +(1/(t(t+1)^2 )) +(1/(t^2 (t+1)^2 )) ⇒  y(t) =y(0)L^(−1) (((t+2)/((t+2)^2 )))+y^′ (0)L^(−1) ((1/((t+1)^2 )))+L^(−1) ((1/(t(t+1)^2 )))  +L^(−1) ((1/(t^2 (t+1)^2 ))) rest decompisition ...be continued...
laplacemethodeL(y)+2L(y)+L(y)=L(1+t)t2L(y)ty(o)y(0)+2(tL(y)y(0))+L(y)=L(1+t)(t2+2t+1)L(y)=ty(o)+2y(o)+y(0)+L(1+t)(t2+2t+1)L(y)=(t+2)y(o)+y(0)+L(1+t)butL(1+t)=0(1+x)etxdx=0etxdx+0xetxdx=[1tetx]x=0+[xtetx]x=0+1t0etxdx=1t+1t[1tetx]x=0=1t+1t2e(t2+2t+1)L(y)=y(0)(t+2)+y(0)+1t+1t2L(y)=y(0).t+2(t+1)2+y(0)1(t+1)2+1t(t+1)2+1t2(t+1)2y(t)=y(0)L1(t+2(t+2)2)+y(0)L1(1(t+1)2)+L1(1t(t+1)2)+L1(1t2(t+1)2)restdecompisitionbecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *