Question Number 107995 by Ar Brandon last updated on 13/Aug/20

Answered by Ar Brandon last updated on 13/Aug/20
![x_(GH) : r^2 +2r+1=0 , (r+1)^2 =0, r_1 =−1=r_2 ⇒x_(GH) =(At+B)e^(−t) =Ate^(−t) +Be^(−t) By varying the parameters, Let x_P =A(t)te^(−t) +B(t)e^(−t) { ((A′(t)(te^(−t) )+B′(t)(e^(−t) )=0),(eqn(1))),((A′(t)(te^(−t) )′+B′(t)(e^(−t) )′=1+t),(eqn(2))) :} eqn(2)⇒A′(t)(e^(−t) −te^(−t) )−B′(t)(e^(−t) )=1+t ⇒−[A′(t)(te^(−t) )+B′(t)e^(−t) ]+A′(t)e^(−t) =1+t⇒A′(t)=e^t +te^t ⇒A(t)=∫(1+t)e^t dt=(1+t)e^t −e^t +k=te^t +k A(t) in eqn(1)⇒B′(t)=−A′(t)t⇒B(t)=−∫A′(t)tdt ⇒−B(t)=t∫A′(t)dt−∫{(dt/dt)∫A′(t)dt}dt ⇒B(t)=−t(te^t +k)+∫(te^t +k)dt ⇒B(t)=−t(te^t +k)+[te^t −e^t ]+kt+c ⇒B(t)=−t^2 e^t +te^t −e^t +c ⇒x_P =(te^t +k)te^(−t) +(−t^2 e^t +te^t −e^t +c)e^(−t) ⇒x_P =t^2 +kte^(−t) −t^2 +t−1+ce^(−t) =t−1+(kt+c)e^(−t) ⇒x_G =(At+B)e^(−t) +t−1+(kt+c)e^(−t) ⇒x_G =(αt+β)e^(−t) +t−1 , α=A+k , β=B+c](https://www.tinkutara.com/question/Q108030.png)
Answered by Aziztisffola last updated on 13/Aug/20

Commented by Ar Brandon last updated on 13/Aug/20
Thanks
Answered by mathmax by abdo last updated on 14/Aug/20
![laplace method e ⇒L(y^(′′) )+2L(y^′ )+L(y) =L(1+t) ⇒ t^2 L(y)−ty(o)−y^′ (0)+2(t L(y)−y(0))+L(y) =L(1+t) ⇒(t^2 +2t +1)L(y) =ty(o)+2y(o)+y^′ (0)+L(1+t) ⇒ (t^2 +2t+1)L(y) =(t+2)y(o) +y^′ (0) +L(1+t) but L(1+t) =∫_0 ^∞ (1+x)e^(−tx) dx =∫_0 ^∞ e^(−tx) dx+∫_0 ^∞ xe^(−tx) dx =[−(1/t)e^(−tx) ]_(x=0) ^∞ +[−(x/t)e^(−tx) ]_(x=0) ^∞ +(1/t)∫_0 ^∞ e^(−tx) dx =(1/t) +(1/t)[−(1/t)e^(−tx) ]_(x=0) ^∞ =(1/t)+(1/t^2 ) e ⇒(t^2 +2t+1)L(y)=y(0)(t+2)+y^′ (0)+(1/t)+(1/t^2 ) ⇒ ⇒L(y) =y(0).((t+2)/((t+1)^2 )) +y^′ (0)(1/((t+1)^2 )) +(1/(t(t+1)^2 )) +(1/(t^2 (t+1)^2 )) ⇒ y(t) =y(0)L^(−1) (((t+2)/((t+2)^2 )))+y^′ (0)L^(−1) ((1/((t+1)^2 )))+L^(−1) ((1/(t(t+1)^2 ))) +L^(−1) ((1/(t^2 (t+1)^2 ))) rest decompisition ...be continued...](https://www.tinkutara.com/question/Q108033.png)