Menu Close

Solve-the-differential-equation-xy-2-1-dx-x-2-y-1-dy-0-




Question Number 175036 by Mastermind last updated on 16/Aug/22
Solve the differential equation  (xy^2 −1)dx−(x^2 y−1)dy=0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\left(\mathrm{xy}^{\mathrm{2}} −\mathrm{1}\right)\mathrm{dx}−\left(\mathrm{x}^{\mathrm{2}} \mathrm{y}−\mathrm{1}\right)\mathrm{dy}=\mathrm{0} \\ $$
Answered by ajfour last updated on 17/Aug/22
xy(ydx−xdy)=dx−dy  ⇒  xy^3 d((x/y))=d(x−y)  ⇒  y^4 ((x/y))d((x/y))=d(x−y)         x^4 ((y/x))^3 d((x/y))=d(x−y)      −3x^3 y((y/x))^2 d((x/y))=−3d(x−y)     3xy^3 d((x/y))=3d(x−y)  rearranging & adding  and with   t=(x/y)  (x−y)^4 dt=(3+(1/t)+t^3 −3t^2 )d(x−y)  say if x−y=z  (dz/z^4 )=(dt/(3(1−t^2 )+t(t^2 +(1/t^2 ))))  ..
$${xy}\left({ydx}−{xdy}\right)={dx}−{dy} \\ $$$$\Rightarrow\:\:{xy}^{\mathrm{3}} {d}\left(\frac{{x}}{{y}}\right)={d}\left({x}−{y}\right) \\ $$$$\Rightarrow\:\:{y}^{\mathrm{4}} \left(\frac{{x}}{{y}}\right){d}\left(\frac{{x}}{{y}}\right)={d}\left({x}−{y}\right) \\ $$$$\:\:\:\:\:\:\:{x}^{\mathrm{4}} \left(\frac{{y}}{{x}}\right)^{\mathrm{3}} {d}\left(\frac{{x}}{{y}}\right)={d}\left({x}−{y}\right) \\ $$$$\:\:\:\:−\mathrm{3}{x}^{\mathrm{3}} {y}\left(\frac{{y}}{{x}}\right)^{\mathrm{2}} {d}\left(\frac{{x}}{{y}}\right)=−\mathrm{3}{d}\left({x}−{y}\right) \\ $$$$\:\:\:\mathrm{3}{xy}^{\mathrm{3}} {d}\left(\frac{{x}}{{y}}\right)=\mathrm{3}{d}\left({x}−{y}\right) \\ $$$${rearranging}\:\&\:{adding} \\ $$$${and}\:{with}\:\:\:{t}=\frac{{x}}{{y}} \\ $$$$\left({x}−{y}\right)^{\mathrm{4}} {dt}=\left(\mathrm{3}+\frac{\mathrm{1}}{{t}}+{t}^{\mathrm{3}} −\mathrm{3}{t}^{\mathrm{2}} \right){d}\left({x}−{y}\right) \\ $$$${say}\:{if}\:{x}−{y}={z} \\ $$$$\frac{{dz}}{{z}^{\mathrm{4}} }=\frac{{dt}}{\mathrm{3}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)+{t}\left({t}^{\mathrm{2}} +\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right)} \\ $$$$.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *