Menu Close

Solve-the-differential-equation-xy-y-2x-1-x-1-2-0-




Question Number 99260 by Ar Brandon last updated on 19/Jun/20
Solve the differential equation   xy′−y+((2x+1)/((x+1)^2 ))=0
Solvethedifferentialequationxyy+2x+1(x+1)2=0
Answered by Mr.D.N. last updated on 19/Jun/20
Commented by Ar Brandon last updated on 20/Jun/20
Thank you ��
Answered by mathmax by abdo last updated on 19/Jun/20
xy^′  −y +((2x+1)/((x+1)^2 )) =0  (he)→xy^′ −y =0 ⇒(y^′ /y) =(1/x) ⇒ln∣y∣ =ln∣x∣ +c ⇒  y(x) =k ∣x∣  let determine slution on ]0,+∞[ ⇒y(x) =kx  mvc  method →y^′  =k^′  x +k  (e) ⇒k^′  x^2  +kx −kx =−((2x+1)/((x+1)^2 )) ⇒k^′  =−((2x+1)/(x^2 (x+1)^2 )) ⇒k(x) =−∫((2x+1)/(x^2 (x+1)^2 ))dx +c  let decompose F(x) =((2x+1)/(x^2 (x+1)^2 )) we have (1/x^2 )−(1/((x+1)^2 )) =(((x+1)^2 −x^2 )/(x^2 (x+1)^2 ))  =((2x+1)/(x^2 (x+1)^2 )) =F(x) ⇒k(x) =−∫(dx/x^2 ) +∫ (dx/((x+1)^2 )) =(1/x)−(1/(x+1)) +c ⇒  y(x) =xk(x) =x((1/x)−(1/(x+1)) +c) =1−(x/(x+1)) +c =(1/(x+1)) +c
xyy+2x+1(x+1)2=0(he)xyy=0yy=1xlny=lnx+cy(x)=kxletdetermineslutionon]0,+[y(x)=kxmvcmethody=kx+k(e)kx2+kxkx=2x+1(x+1)2k=2x+1x2(x+1)2k(x)=2x+1x2(x+1)2dx+cletdecomposeF(x)=2x+1x2(x+1)2wehave1x21(x+1)2=(x+1)2x2x2(x+1)2=2x+1x2(x+1)2=F(x)k(x)=dxx2+dx(x+1)2=1x1x+1+cy(x)=xk(x)=x(1x1x+1+c)=1xx+1+c=1x+1+c
Commented by mathmax by abdo last updated on 19/Jun/20
sorry y(x) =(1/(x+1)) +cx
sorryy(x)=1x+1+cx
Commented by Ar Brandon last updated on 20/Jun/20
Thanks
Commented by mathmax by abdo last updated on 20/Jun/20
you are welcome
youarewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *