Menu Close

Solve-the-differential-equation-y-cosh-x-y-




Question Number 25572 by hoangnampham13 last updated on 11/Dec/17
Solve the differential equation:  y′ = cosh(x+y)
Solvethedifferentialequation:y=cosh(x+y)
Answered by prakash jain last updated on 11/Dec/17
y′ = cosh(x+y)   (A)  u(x)=y(x)+x  u′(x)=y′(x)+1  subtituting y′ from A  u′(x)=cosh (x+y)+1  u′(x)=cosh (u)+1  (du/dx)=cosh u+1  (du/(cosh u+1))=dx  ∫(du/(cosh u+1))=∫dx  v=tanh (u/2)  dv=(1/2)sech^2 (u/2)du=(du/(2cosh^2 (u/2)))  cosh u+1=2cosh^2 (u/2)  ∫(du/(cosh u+1))=∫dv=v+c=tanh (u/2)+c  tanh (u/2)+c=x  tanh (u/2)=x−c  (u/2)=tanh^(−1) (x−c)  u=2tanh^(−1) (x−c)  y(x)+x=2tanh^(−1) (x−c)  y(x)=2tanh^(−1) (x−c)−x
y=cosh(x+y)(A)u(x)=y(x)+xu(x)=y(x)+1subtitutingyfromAu(x)=cosh(x+y)+1u(x)=cosh(u)+1dudx=coshu+1ducoshu+1=dxducoshu+1=dxv=tanhu2dv=12sech2u2du=du2cosh2u2coshu+1=2cosh2u2ducoshu+1=dv=v+c=tanhu2+ctanhu2+c=xtanhu2=xcu2=tanh1(xc)u=2tanh1(xc)y(x)+x=2tanh1(xc)y(x)=2tanh1(xc)x

Leave a Reply

Your email address will not be published. Required fields are marked *