Menu Close

solve-the-eqn-dr-d-r-a-2-r-2-a-2-r-2-cot-hint-let-a-2-r-2-a-2-r-2-2r-2-




Question Number 14630 by Don sai last updated on 03/Jun/17
solve the eqn  dr/dθ=[r(a^2 −r^2 )/a^2 +r^2 ]cotθ  hint. let a^2 +r^2 =a^2 −r^2 +2r^2 .
solvetheeqndr/dθ=[r(a2r2)/a2+r2]cotθhint.leta2+r2=a2r2+2r2.
Commented by prakash jain last updated on 03/Jun/17
(dr/dθ)=((r(a^2 −r^2 ))/((a^2 +r^2 )))cot θ  (((a^2 +r^2 ))/(r(a^2 −r^2 )))dr=cot θdθ  ∫(((a^2 +r^2 ))/(r(a^2 −r^2 )))dr  (using hint a^2 +r^2 =a^2 −r^2 +2r^2   =∫(((a^2 −r^2 +2r^2 ))/(r(a^2 −r^2 )))dr  =∫(((a^2 −r^2 ))/(r(a^2 −r^2 )))dr+∫((2r^2 )/(r(a^2 −r^2 )))dr  =∫(dr/r)+∫((2r)/((a^2 −r^2 )))dr  sunstitute a^2 −r^2 =u in second  part −2rdr=du  =ln r+∫((−du)/u) +c  =ln r−ln u=ln(r/(a^2 −r^2 ))+C  ∫cot θdθ=ln sin θ+c  ln (r/(a^2 −r^2 ))=ln sin θ+c  (r/((a^2 −r^2 )sin θ))=e^c
drdθ=r(a2r2)(a2+r2)cotθ(a2+r2)r(a2r2)dr=cotθdθ(a2+r2)r(a2r2)dr(usinghinta2+r2=a2r2+2r2=(a2r2+2r2)r(a2r2)dr=(a2r2)r(a2r2)dr+2r2r(a2r2)dr=drr+2r(a2r2)drsunstitutea2r2=uinsecondpart2rdr=du=lnr+duu+c=lnrlnu=lnra2r2+Ccotθdθ=lnsinθ+clnra2r2=lnsinθ+cr(a2r2)sinθ=ec
Commented by Don sai last updated on 06/Jun/17
Thank you
Thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *