Menu Close

Solve-the-equation-2-u-x-y-sin-x-cos-y-subjected-to-the-boundary-conditions-at-y-pi-2-u-x-2x-and-x-pi-u-2sin-y-




Question Number 23445 by tawa tawa last updated on 30/Oct/17
Solve the equation:   (∂^2 u/(∂x∂y)) = sin(x)cos(y),   subjected to the boundary  conditions at   y = (π/2),    (∂u/∂x) = 2x    and     x = π,    u = 2sin(y)
Solvetheequation:2uxy=sin(x)cos(y),subjectedtotheboundaryconditionsaty=π2,ux=2xandx=π,u=2sin(y)
Answered by mrW1 last updated on 31/Oct/17
 (∂^2 u/(∂x∂y)) = sin(x)cos(y)  ⇒(∂u/∂x)=∫sin (x) cos (y) dy=sin (x) sin (y)+f(x)    sin (x) sin ((π/2))+f(x)=2x  ⇒f(x)=2x−sin (x)  (∂u/∂x)=sin (x) [sin (y)−1]+2x  ⇒u=∫{sin (x) [sin (y)−1]+2x}dx  =−cos (x)[sin (y)−1]+x^2 +C    −cos (π)[sin (y)−1]+π^2 +C=2 sin (y)  ⇒C= sin (y)+1−π^2     ⇒u(x,y)=cos (x)+[1−cos (x)] sin (y)+x^2 +1−π^2
2uxy=sin(x)cos(y)ux=sin(x)cos(y)dy=sin(x)sin(y)+f(x)sin(x)sin(π2)+f(x)=2xf(x)=2xsin(x)ux=sin(x)[sin(y)1]+2xu={sin(x)[sin(y)1]+2x}dx=cos(x)[sin(y)1]+x2+Ccos(π)[sin(y)1]+π2+C=2sin(y)C=sin(y)+1π2u(x,y)=cos(x)+[1cos(x)]sin(y)+x2+1π2
Commented by tawa tawa last updated on 31/Oct/17
God bless you sir.
Godblessyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *