Menu Close

Solve-the-equation-2-x-2-x-4-1-2-x-3-x-4-1-x-4-1-




Question Number 190928 by TUN last updated on 14/Apr/23
Solve the equation :  2+x^2 (x^4 +1)=(((√2)x^3 (x^4 −1))/( (√(x^4 +1))))
$${Solve}\:{the}\:{equation}\:: \\ $$$$\mathrm{2}+{x}^{\mathrm{2}} \left({x}^{\mathrm{4}} +\mathrm{1}\right)=\frac{\sqrt{\mathrm{2}}{x}^{\mathrm{3}} \left({x}^{\mathrm{4}} −\mathrm{1}\right)}{\:\sqrt{{x}^{\mathrm{4}} +\mathrm{1}}} \\ $$$$ \\ $$
Commented by Frix last updated on 14/Apr/23
x=±i
$${x}=\pm\mathrm{i} \\ $$
Commented by TUN last updated on 14/Apr/23
it means no real root
$${it}\:{means}\:{no}\:{real}\:{root} \\ $$
Commented by TUN last updated on 14/Apr/23
prove it
$${prove}\:{it} \\ $$
Commented by Frix last updated on 14/Apr/23
2+x^2 (x^4 +1)−(((√2)x^3 (x^4 −1))/( (√(x^4 +1))))≥2
$$\mathrm{2}+{x}^{\mathrm{2}} \left({x}^{\mathrm{4}} +\mathrm{1}\right)−\frac{\sqrt{\mathrm{2}}{x}^{\mathrm{3}} \left({x}^{\mathrm{4}} −\mathrm{1}\right)}{\:\sqrt{{x}^{\mathrm{4}} +\mathrm{1}}}\geqslant\mathrm{2} \\ $$
Commented by TUN last updated on 15/Apr/23
how to ≥2
$${how}\:{to}\:\geqslant\mathrm{2} \\ $$
Commented by Frix last updated on 15/Apr/23
2+x^2 (x^4 +1)−(((√2)x^3 (x^4 −1))/( (√(x^4 +1))))≥2  x^2 (x^4 +1)−(((√2)x^3 (x^4 −1))/( (√(x^4 +1))))≥0  (x^4 +1)^(3/2) −(√2)x(x^4 −1)≥0  f(x)=(x^4 +1)^(3/2) −(√2)x(x^4 −1)  f′(x)=0 ⇒ x≈−.522499270  f′′(−.522499270)>0 ⇒  Minimum (f(x)) =.430... >0
$$\mathrm{2}+{x}^{\mathrm{2}} \left({x}^{\mathrm{4}} +\mathrm{1}\right)−\frac{\sqrt{\mathrm{2}}{x}^{\mathrm{3}} \left({x}^{\mathrm{4}} −\mathrm{1}\right)}{\:\sqrt{{x}^{\mathrm{4}} +\mathrm{1}}}\geqslant\mathrm{2} \\ $$$${x}^{\mathrm{2}} \left({x}^{\mathrm{4}} +\mathrm{1}\right)−\frac{\sqrt{\mathrm{2}}{x}^{\mathrm{3}} \left({x}^{\mathrm{4}} −\mathrm{1}\right)}{\:\sqrt{{x}^{\mathrm{4}} +\mathrm{1}}}\geqslant\mathrm{0} \\ $$$$\left({x}^{\mathrm{4}} +\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\sqrt{\mathrm{2}}{x}\left({x}^{\mathrm{4}} −\mathrm{1}\right)\geqslant\mathrm{0} \\ $$$${f}\left({x}\right)=\left({x}^{\mathrm{4}} +\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\sqrt{\mathrm{2}}{x}\left({x}^{\mathrm{4}} −\mathrm{1}\right) \\ $$$${f}'\left({x}\right)=\mathrm{0}\:\Rightarrow\:{x}\approx−.\mathrm{522499270} \\ $$$${f}''\left(−.\mathrm{522499270}\right)>\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{Minimum}\:\left({f}\left({x}\right)\right)\:=.\mathrm{430}…\:>\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *