Menu Close

Solve-the-equation-2-x-3-x-4-x-6-x-9-x-1-




Question Number 176592 by Shrinava last updated on 22/Sep/22
Solve the equation:  2^x  + 3^x  − 4^x  + 6^x  − 9^x  = 1
Solvetheequation:2x+3x4x+6x9x=1
Answered by Frix last updated on 22/Sep/22
obvious solution x=0
obvioussolutionx=0
Answered by a.lgnaoui last updated on 23/Sep/22
posons  a=2^x   b=3^x   a^2 =2^(2x)   b^2 =3^(2x)   ab=2^x 3^x =6^x   (a+b)−(a^2 +b^2 )+ab=1      (a+b)−[(a+b)^2 −2ab]+ab=1  (a+b)−(a+b)^2 +3ab=1     (I)  2^x +3^x −(2^x +3^x )^2 =1−3×6^x   (2^x +3^x )(1−2^x −3^x )=1−3×6^x   (2^x +3^x )(2^(2x) +3^(2x) )=3×6^x −1  (2^x +3^x )[(2^(2x) +3^(2x) +2×6^x )−2×6^x ]=3×6^x −1  (2^x +3^x )^3 −2×6^x (2^x +3^x )=3×6^x −1  3ab=1+(a+b)^2 −(a+b)  3×6^x =1+(2^x +3^x )^2 −(2^x +3^x )  (2^x +3^x )^3 −2(2^x +3^x )((1+(2^x +3^x )^2 −(2^x +3^x ))/3)=(2^x +3^x )^2 −(2^x +3^x )  on pose (2^x +3^x =z)  z^3 −(2/)(([z(1+2z^2 −z])/3)=z^2 −z  z^2 −((2(1+2z^2 −z))/3)=z−1  3z^2 −4z^2 +2z−2=3z−3  z^2 +z+1=0      z=0  2^x =−3^x     (−(2/3))^x =1⇒x=0  Δ=1−4=[(√3) i]^2   z1=((−1±(√3) i)/2)  2^x +3^x =(1/2)+((√3)/2)i  2(2^x +3^x )=1+(√3) i  ....solutions  via    coshx ?
posonsa=2xb=3xa2=22xb2=32xab=2x3x=6x(a+b)(a2+b2)+ab=1(a+b)[(a+b)22ab]+ab=1(a+b)(a+b)2+3ab=1(I)2x+3x(2x+3x)2=13×6x(2x+3x)(12x3x)=13×6x(2x+3x)(22x+32x)=3×6x1(2x+3x)[(22x+32x+2×6x)2×6x]=3×6x1(2x+3x)32×6x(2x+3x)=3×6x13ab=1+(a+b)2(a+b)3×6x=1+(2x+3x)2(2x+3x)(2x+3x)32(2x+3x)1+(2x+3x)2(2x+3x)3=(2x+3x)2(2x+3x)onpose(2x+3x=z)z32[z(1+2z2z]3=z2zz22(1+2z2z)3=z13z24z2+2z2=3z3z2+z+1=0z=02x=3x(23)x=1x=0Δ=14=[3i]2z1=1±3i22x+3x=12+32i2(2x+3x)=1+3i.solutionsviacoshx?
Commented by Shrinava last updated on 23/Sep/22
Thank you dear professor, yes, gracias
Thankyoudearprofessor,yes,gracias
Commented by Frix last updated on 23/Sep/22
(a+b)−(a^2 +b^2 )+ab=1  a=u−v∧b=u+v  2u−(2u^2 +2v^2 )+u^2 −v^2 =1  2u−u^2 −3v^2 =1  v^2 =−(((u−1)^2 )/3)  v=±((u−1)/( (√3)))i  a=u±(((√3)(u−1))/3)i∧b=u∓(((√3)(u−1))/3)i  2^x =u±(((√3)(u−1))/3)i∧3^x =u∓(((√3)(u−1))/3)i  again obviously x=0∧u=1  x=((ln (u±(((√3)(u−1))/3)i) +2n_1 πi)/(ln 2))∧x=((ln (u∓(((√3)(u−1))/3)i) +2n_2 πi)/(ln 3))  I don′t think we can find n_1 , n_2 ∈Z for u≠1  p±qi=(√(p^2 +q^2 ))e^(±i tan^(−1)  (q/p))   ln (p±qi) =((ln (p^2 +q^2 ))/2)+(2nπ±tan^(−1)  (q/p))i  we have  ((ln (p−qi))/(ln 2))=((ln (p+qi))/(ln 3))  we need  ((2n_1 π−tan^(−1)  t)/(ln 2))=((2n_2 π+tan^(−1)  t)/(ln 3))  ⇔  n_2 =((1−((ln 3)/(ln 2)))/(2π))tan^(−1)  t +((ln 3)/(ln 2))n_1  with n_1 , n_2 ∈Z
(a+b)(a2+b2)+ab=1a=uvb=u+v2u(2u2+2v2)+u2v2=12uu23v2=1v2=(u1)23v=±u13ia=u±3(u1)3ib=u3(u1)3i2x=u±3(u1)3i3x=u3(u1)3iagainobviouslyx=0u=1x=ln(u±3(u1)3i)+2n1πiln2x=ln(u3(u1)3i)+2n2πiln3Idontthinkwecanfindn1,n2Zforu1p±qi=p2+q2e±itan1qpln(p±qi)=ln(p2+q2)2+(2nπ±tan1qp)iwehaveln(pqi)ln2=ln(p+qi)ln3weneed2n1πtan1tln2=2n2π+tan1tln3n2=1ln3ln22πtan1t+ln3ln2n1withn1,n2Z
Commented by a.lgnaoui last updated on 23/Sep/22
thank you
thankyou
Commented by Tawa11 last updated on 23/Sep/22
Great sirs
Greatsirs

Leave a Reply

Your email address will not be published. Required fields are marked *