Menu Close

Solve-the-equation-2-z-x-y-x-2-y-1-particular-solution-which-z-x-0-x-2-and-z-1-y-cos-y-




Question Number 124634 by bemath last updated on 05/Dec/20
 Solve the equation (∂^2 z/(∂x∂y)) = x^2 y  (1) particular solution which    z(x,0) = x^2  and z(1,y)=cos y
Solvetheequation2zxy=x2y(1)particularsolutionwhichz(x,0)=x2andz(1,y)=cosy
Answered by liberty last updated on 05/Dec/20
 (•) (∂/∂x)((∂z/∂y)) = x^2 y . Integrating with respect to x  we find (∂z/∂y) = (1/3)x^3 y + F(y) ; F(y) is arbitrary  integrating again with respect to y   ⇒ z = (1/6)x^3 y^2 +H(y)+G(x)  where G(x) is arbitrary   since z(x,0) = x^2  we have x^2  = H(0)+G(x)   or G(x)=x^2 −H(0)   thus z=(1/6)x^3 y^2 +H(y)+x^2 −H(0)  since z(1,y)=cos y we have   cos y = (1/6)y^2 +H(y)+1−H(0) or  H(y)=cos y−(1/6)y^2 −1+H(0)  therefore z=(1/6)x^3 y^2 +cos y−(1/6)y^2 −1+H(0)+x^2 −H(0)  we get the required solution   z = (1/6)x^3 y^2 +cos y−(1/6)y^2 +x^2 −1.
()x(zy)=x2y.Integratingwithrespecttoxwefindzy=13x3y+F(y);F(y)isarbitraryintegratingagainwithrespecttoyz=16x3y2+H(y)+G(x)whereG(x)isarbitrarysincez(x,0)=x2wehavex2=H(0)+G(x)orG(x)=x2H(0)thusz=16x3y2+H(y)+x2H(0)sincez(1,y)=cosywehavecosy=16y2+H(y)+1H(0)orH(y)=cosy16y21+H(0)thereforez=16x3y2+cosy16y21+H(0)+x2H(0)wegettherequiredsolutionz=16x3y2+cosy16y2+x21.

Leave a Reply

Your email address will not be published. Required fields are marked *