Menu Close

solve-the-equation-tan-3-cot-1-0-for-0-180-b-show-that-if-cos-2-is-not-zero-then-cos-2-sec-2-2-cos-4-sin-4-cos-4-sin-4-c-find-the-limit-of-tan-3-3-as-0-




Question Number 50892 by peter frank last updated on 21/Dec/18
solve the equation  tan 3θcotθ+1=0 for  0≤θ≤180  b)show that if cos 2θ is not zero  then  cos 2θ+sec 2θ=2[((cos^4 θ+sin^4 θ)/(cos^4 θ−sin^4 θ))]  c)find the limit of  ((tan (θ/3))/(3θ)) as θ→0
solvetheequationtan3θcotθ+1=0for0θ180b)showthatifcos2θisnotzerothencos2θ+sec2θ=2[cos4θ+sin4θcos4θsin4θ]c)findthelimitoftanθ33θasθ0
Answered by kaivan.ahmadi last updated on 21/Dec/18
((cotθ)/(cot3θ))+1=0⇒((cotθ)/(cot3θ))=−1⇒cotθ=−cot3θ  ⇒cotθ=cot(−3θ)  θ=kπ−3θ⇒θ=((kπ)/4)  θ=(π/4),((3π)/4),((5π)/4),((7π)/4)      2(((cos^4 θ+sin^4 θ)/(cos^4 θ−sin^4 θ)))=2((((cos^2 θ+sin^2 θ)^2 −2sin^2 θcos^2 θ)/((cos^2 θ−sin^2 θ)(cos^2 θ+sin^2 θ))))=  ((2−sin^2 2θ)/(cos2θ))=(((1−sin^2 2θ)+1)/(cos2θ))=((cos^2 2θ+1)/(cos2θ))=cos2θ+sec2θ
cotθcot3θ+1=0cotθcot3θ=1cotθ=cot3θcotθ=cot(3θ)θ=kπ3θθ=kπ4θ=π4,3π4,5π4,7π42(cos4θ+sin4θcos4θsin4θ)=2((cos2θ+sin2θ)22sin2θcos2θ(cos2θsin2θ)(cos2θ+sin2θ))=2sin22θcos2θ=(1sin22θ)+1cos2θ=cos22θ+1cos2θ=cos2θ+sec2θ
Answered by peter frank last updated on 21/Dec/18
((sin 3θcos θ)/(cos 3θsin θ))+1=0  ((sin3θ cos θ+cos 3θsin θ)/(cos 3θsin θ))=0  ((sin 4θ)/(cos 3θsin θ))=0  θ=45 and 135
sin3θcosθcos3θsinθ+1=0sin3θcosθ+cos3θsinθcos3θsinθ=0sin4θcos3θsinθ=0θ=45and135
Answered by peter frank last updated on 21/Dec/18
lim_(x→0) ((sin(θ/3) )/(((cos (θ/3))/(3θ)).))  lim_(x→0) ((sin(θ/3) )/(((cos (θ/3))/(3θ((3/3)))).))q  lim_(x→0) ((sin(θ/3) )/((θ/3).9)).(1/(cos (θ/3)))=lim_(x→0)   1.(1/9)=(1/9)  (1/9)
limx0sinθ3cosθ33θ.limx0sinθ3cosθ33θ(33).qlimx0sinθ3θ3.9.1cosθ3=limx01.19=1919

Leave a Reply

Your email address will not be published. Required fields are marked *