Solve-the-equation-x-y-5-i-x-x-y-y-31-ii-No-trial-and-error- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 26649 by Mr eaay last updated on 27/Dec/17 Solvetheequation:x+y=5−−−ixx+yy=31−−−iiNotrialanderror Commented by mrW1 last updated on 27/Dec/17 Ifyouwanttogetananalyticformula,Ithinkthereisnochance.Forconcretevaluesyoucanfindthesolutionviagraphicmethod. Answered by Amstrongmazoka last updated on 28/Dec/17 fromequ(i),y=(5−x)substitutingforyinequ(ii),gives,xx+(5−x)(5−x)=31⇒xx+(5−x)(5−x)−31=0Now,letf(x)=xx+(5−x)(5−x)−31⇒df(x)dx=f′(x)=xx(1+lnx)−(5−x)(5−x)[1+ln(5−x)]Now,bytheNewton′siterativeformula,x2=x1−f(x1)f′(x1),nowforthisparticularf(x),x2=x1−x1x1+(5−x1)(5−x1)−31x1x1(1+lnx1)−(5−x1)(5−x1)[1+ln(5−x1)]Now,choosinganyarbitraryvalueofx1thatmakeslnxandln(5−x)defined,thenwecanonlychoosefrom0<x<5Now,takingx1=1forinstance,givesx2=1.3706,x3=1.6905,x4=1.9049,x5=1.9888x6=1.9998,x7=2.0000,x8=2.0000Thuslimx→2xn=2,∴x=2isasolution.Similarly,choosinganotherarbitraryvalueofsayx1=4,givesx2=3.6294,x3=3.3095,x4=3.0952,x5=3.0112,x6=3.0002,x7=3.0000,x8=3.0000Again,limx→3xn=3,∴x=3isalsoasolutiontotheequation.Anyotherarbitrarilychosenvalueofx1onlypointstoeither2or3.Thusthesearetheonlysolutions.∴eitherx=2orx=3.Butx+y=5,−⇒y=5−x∴whenx=2,y=5−2=3,andwhenx=3,y=5−3=2Finally,forthesystemofequations,x=2andy=3,orx=3andy=2. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-92182Next Next post: let-a-b-c-be-three-digits-all-different-of-zero-Prove-that-ac-cb-a-b-n-1-accc-cc-ccc-ccb-a-b-the-number-accc-cc-has-the-digit-c-n-times- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.