Menu Close

Solve-the-equation-x-y-5-i-x-x-y-y-31-ii-No-trial-and-error-




Question Number 26649 by Mr eaay last updated on 27/Dec/17
Solve the equation:x+y=5−−−i                                          x^x + y^y =31−−−ii  No trial and error
Solvetheequation:x+y=5ixx+yy=31iiNotrialanderror
Commented by mrW1 last updated on 27/Dec/17
If you want to get an analytic formula,  I think there is no chance.  For concrete values you can find  the solution via graphic method.
Ifyouwanttogetananalyticformula,Ithinkthereisnochance.Forconcretevaluesyoucanfindthesolutionviagraphicmethod.
Answered by Amstrongmazoka last updated on 28/Dec/17
from equ(i), y=(5−x)  substituting for y in equ(ii), gives,  x^x +(5−x)^((5−x)) =31  ⇒x^x +(5−x)^((5−x)) −31=0  Now, let f(x)=x^x +(5−x)^((5−x)) −31  ⇒((df(x))/dx)=f′(x)=x^x (1+lnx)−(5−x)^((5−x)) [1+ln(5−x)]  Now, by the Newton′s iterative formula,  x_2 =x_1 −((f(x_1 ))/(f′(x_1 ))), now for this particular f(x),  x_2 =x_1 −((x_1 ^x_1  +(5−x_1 )^((5−x_1 )) −31)/(x_1 ^x_1  (1+lnx_1 )−(5−x_1 )^((5−x_1 )) [1+ln(5−x_1 )]))  Now, choosing any arbitrary value of x_1  that makes lnx and ln(5−x) defined,  then we can only choose from 0<x<5  Now, taking x_1 =1  for instance, gives    x_2 =1.3706,    x_3 =1.6905,     x_4 =1.9049,    x_5 =1.9888  x_6 =1.9998,     x_7 =2.0000,     x_8 =2.0000  Thus    lim_(x→2) x_n  =2,  ∴ x=2 is a solution.  Similarly, choosing another arbitrary value of say x_1 =4, gives  x_2 =3.6294,    x_3 =3.3095,    x_4 =3.0952,  x_5 =3.0112,     x_6 =3.0002,   x_7 =3.0000,    x_8 =3.0000  Again,  lim_(x→3) x_n  =3,   ∴ x=3 is also a solution to the equation.  Any other arbitrarily chosen value of x_(1 ) only points  to either 2 or 3. Thus these are the only solutions.  ∴ either x=2 or x=3.  But x+y=5,  −⇒y=5−x  ∴ when x=2,  y=5−2=3,  and when x=3,  y=5−3=2  Finally, for the system of equations,  x=2 and y=3,   or    x=3 and y=2.
fromequ(i),y=(5x)substitutingforyinequ(ii),gives,xx+(5x)(5x)=31xx+(5x)(5x)31=0Now,letf(x)=xx+(5x)(5x)31df(x)dx=f(x)=xx(1+lnx)(5x)(5x)[1+ln(5x)]Now,bytheNewtonsiterativeformula,x2=x1f(x1)f(x1),nowforthisparticularf(x),x2=x1x1x1+(5x1)(5x1)31x1x1(1+lnx1)(5x1)(5x1)[1+ln(5x1)]Now,choosinganyarbitraryvalueofx1thatmakeslnxandln(5x)defined,thenwecanonlychoosefrom0<x<5Now,takingx1=1forinstance,givesx2=1.3706,x3=1.6905,x4=1.9049,x5=1.9888x6=1.9998,x7=2.0000,x8=2.0000Thuslimx2xn=2,x=2isasolution.Similarly,choosinganotherarbitraryvalueofsayx1=4,givesx2=3.6294,x3=3.3095,x4=3.0952,x5=3.0112,x6=3.0002,x7=3.0000,x8=3.0000Again,limx3xn=3,x=3isalsoasolutiontotheequation.Anyotherarbitrarilychosenvalueofx1onlypointstoeither2or3.Thusthesearetheonlysolutions.eitherx=2orx=3.Butx+y=5,y=5xwhenx=2,y=52=3,andwhenx=3,y=53=2Finally,forthesystemofequations,x=2andy=3,orx=3andy=2.

Leave a Reply

Your email address will not be published. Required fields are marked *