Menu Close

solve-the-equation-x-y-z-30-2-x-y-z-7-5-x-y-z-22-x-y-z-they-form-funny-positions-




Question Number 188262 by normans last updated on 27/Feb/23
         solve the equation;                  {: ((x + y +z =  30(√2))),((x − y − z = 7,5)),((x + y − z = (√(22)))) }             x ; y ; z = ??            they form funny positions
$$ \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{solve}}\:\boldsymbol{{the}}\:\boldsymbol{{equation}};\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\left.\begin{matrix}{\boldsymbol{{x}}\:+\:\boldsymbol{{y}}\:+\boldsymbol{{z}}\:=\:\:\mathrm{30}\sqrt{\mathrm{2}}}\\{\boldsymbol{{x}}\:−\:\boldsymbol{{y}}\:−\:\boldsymbol{{z}}\:=\:\mathrm{7},\mathrm{5}}\\{\boldsymbol{{x}}\:+\:\boldsymbol{{y}}\:−\:\boldsymbol{{z}}\:=\:\sqrt{\mathrm{22}}}\end{matrix}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{x}}\:;\:\boldsymbol{{y}}\:;\:\boldsymbol{{z}}\:=\:?? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:{they}\:{form}\:{funny}\:{positions}\: \\ $$$$ \\ $$
Answered by a.lgnaoui last updated on 27/Feb/23
  •ligne(1)+ligne(2)      2x=30(√2) +7,5   x=15(√2) +3,75    •ligne(1)+ligne(3)      2(x+y)=30(√2) +(√(22))                y=((30(√2) +(√(22)) )/2)−((30(√2) +7,5)/2)                 y=((√(22))/2)−3,75    •ligne(1)     z=30(√2) −(x+y)      x+y=15(√2) +((√(22))/2)                    z= ((30(√2) −(√(22)))/2)  (x,y,z)={(15(√2) +3,75) ;(((√(22))/2)−3,75);(((30(√2) −(√(22)))/2))}
$$\:\:\bullet{ligne}\left(\mathrm{1}\right)+{ligne}\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\mathrm{2}{x}=\mathrm{30}\sqrt{\mathrm{2}}\:+\mathrm{7},\mathrm{5}\:\:\:\boldsymbol{{x}}=\mathrm{15}\sqrt{\mathrm{2}}\:+\mathrm{3},\mathrm{75} \\ $$$$\:\:\bullet{ligne}\left(\mathrm{1}\right)+{ligne}\left(\mathrm{3}\right) \\ $$$$\:\:\:\:\mathrm{2}\left({x}+{y}\right)=\mathrm{30}\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{22}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{y}=\frac{\mathrm{30}\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{22}}\:}{\mathrm{2}}−\frac{\mathrm{30}\sqrt{\mathrm{2}}\:+\mathrm{7},\mathrm{5}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{y}}=\frac{\sqrt{\mathrm{22}}}{\mathrm{2}}−\mathrm{3},\mathrm{75} \\ $$$$\:\:\bullet{ligne}\left(\mathrm{1}\right) \\ $$$$\:\:\:{z}=\mathrm{30}\sqrt{\mathrm{2}}\:−\left({x}+{y}\right) \\ $$$$\:\:\:\:{x}+{y}=\mathrm{15}\sqrt{\mathrm{2}}\:+\frac{\sqrt{\mathrm{22}}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{z}}=\:\frac{\mathrm{30}\sqrt{\mathrm{2}}\:−\sqrt{\mathrm{22}}}{\mathrm{2}} \\ $$$$\left(\boldsymbol{{x}},\boldsymbol{{y}},\boldsymbol{{z}}\right)=\left\{\left(\mathrm{15}\sqrt{\mathrm{2}}\:+\mathrm{3},\mathrm{75}\right)\:;\left(\frac{\sqrt{\mathrm{22}}}{\mathrm{2}}−\mathrm{3},\mathrm{75}\right);\left(\frac{\mathrm{30}\sqrt{\mathrm{2}}\:−\sqrt{\mathrm{22}}}{\mathrm{2}}\right)\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *