Menu Close

Solve-the-equation-z-2-2-1-j-z-2-0-Givin-each-result-in-form-a-jb-with-a-and-b-correct-to-2dp-




Question Number 15348 by tawa tawa last updated on 09/Jun/17
Solve the equation  z^2  + 2(1 + j)z + 2 = 0, Givin each result in form  a + jb  with  a  and  b  correct to  2dp.
Solvetheequationz2+2(1+j)z+2=0,Givineachresultinforma+jbwithaandbcorrectto2dp.
Answered by RasheedSoomro last updated on 10/Jun/17
Let z=x+jy   z^2  + 2(1 + j)z + 2 = 0  (x+jy)^2 +2(1+j)(x+jy)+2=0  x^2 −y^2 +2xyj+2(x+xj+yj−y)+2=0  x^2 −y^2 +2xyj+2x+2xj+2yj−2y+2=0  (x^2 −y^2 +2x−2y+2)+( 2xy+2x+2y)j=0+0j  x^2 −y^2 +2x−2y+2=0 ∧ 2xy+2x+2y=0  (x−y)(x+y)+2(x−y)+2=0 ∧ x+xy+y=0  (x−y)(x+y+2)+2=0  ∧ y=((−x)/(x+1))  (x−((−x)/(x+1)))(x+((−x)/(x+1))+2)+2=0  ((x^2 +x+x)/(x+1))×((x^2 +x−x+2x+2)/(x+1))+2=0  ((x^2 +2x)/(x+1))×((x^2 +2x+2)/(x+1))+2=0  (x^2 +2x)^2 +2(x^2 +2x)+2(x^2 +2x+1)=0  Let x^2 +2x=t  t^2 +2t+2t+2=0  t^2 +4t+2=0  t=((−4±(√(16−8)))/2)  t=−2±(√2)  x^2 +2x=−2+(√2)   ∨  x^2 +2x=−2−(√2)  x^2 +2x+2−(√2) =0  ∨  x^2 +2x+2+(√2)=0  x=((−2±(√(4−4(2−(√2)))))/2)  ∨ x=((−2±(√(4−4(2+(√2)))))/2)  x=((−2±(√(4−8+4(√2)))))/2)  ∨ x=((−2±(√(4−8−4(√2)))))/2)  x=((−2±(√(−4+4(√2)))))/2)  ∨ x=((−2±(√(−4−4(√2)))))/2)  x=((−2±2(√((√2)−1)))/2)  ∨ x=((−2∓2i(√((√2)  +1)))/2)  x=−1±(√((√2)−1))    ∨  x=−1∓i(√((√2)  +1))  y=((−x)/(x+1))  y=((−(−1±(√((√2)−1)) ))/((−1±(√((√2)−1)) )+1))                 ∨       y=((−(−1∓i(√((√2)  +1))))/((−1∓i(√((√2)  +1)))+1))  y=((1∓(√((√2)−1)) )/(−1±(√((√2)−1)) +1))                 ∨       y=((1±i(√((√2)  +1)))/(−1∓i(√((√2)  +1))+1))  y=((1∓(√((√2)−1)) )/(±(√((√2)−1)) ))×((±(√((√2)−1)) )/(±(√((√2)−1)) ))   ∨   y=((1±i(√((√2)  +1)))/(∓i(√((√2)  +1))))×((∓i(√((√2)  +1)))/(∓i(√((√2)  +1))))  y=(((1∓(√((√2)−1)) )(±(√((√2)−1)) ))/( (√2)−1 ))  ∨   y=(((1±i(√((√2)  +1)))(∓i(√((√2)  +1))))/(−((√2)  +1)))  y=((±(√((√2)−1))∓(√2)−1 ))/( (√2)−1 ))  ∨   y=((∓i(√((√2)  +1))−i^2 (√2)  +1))/(−((√2)  +1)))  y=((±(√((√2)−1))∓(√2)−1 )/( (√2)−1 ))  ∨   y=((∓i(√((√2)  +1))+(√2)  +1)/(−((√2)  +1)))    Continue
Letz=x+jyz2+2(1+j)z+2=0(x+jy)2+2(1+j)(x+jy)+2=0x2y2+2xyj+2(x+xj+yjy)+2=0x2y2+2xyj+2x+2xj+2yj2y+2=0(x2y2+2x2y+2)+(2xy+2x+2y)j=0+0jx2y2+2x2y+2=02xy+2x+2y=0(xy)(x+y)+2(xy)+2=0x+xy+y=0(xy)(x+y+2)+2=0y=xx+1(xxx+1)(x+xx+1+2)+2=0x2+x+xx+1×x2+xx+2x+2x+1+2=0x2+2xx+1×x2+2x+2x+1+2=0(x2+2x)2+2(x2+2x)+2(x2+2x+1)=0Letx2+2x=tt2+2t+2t+2=0t2+4t+2=0t=4±1682t=2±2x2+2x=2+2x2+2x=22x2+2x+22=0x2+2x+2+2=0x=2±44(22)2x=2±44(2+2)2x=2±48+42)2x=2±4842)2x=2±4+42)2x=2±442)2x=2±2212x=22i2+12x=1±21x=1i2+1y=xx+1y=(1±21)(1±21)+1y=(1i2+1)(1i2+1)+1y=1211±21+1y=1±i2+11i2+1+1y=121±21×±21±21y=1±i2+1i2+1×i2+1i2+1y=(121)(±21)21y=(1±i2+1)(i2+1)(2+1)y=±2121)21y=i2+1i22+1)(2+1)y=±212121y=i2+1+2+1(2+1)Continue
Commented by tawa tawa last updated on 10/Jun/17
Am with you sir. God bless you sir.
Amwithyousir.Godblessyousir.
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 09/Jun/17
z^2 +2(1+j)z+(1+j)^2 =(1+j)^2 −2⇒  (z+1+j)^2 =1+2j−1−2=2(j−1)  2(j−1)=−2(√2)(((√2)/2)−j((√2)/2))=−2(√2)e^(−j(π/4))   ⇒z+1+j=±j(8)^(1/4) e^(−j(π/8)) =±j(8)^(1/4) (cos(−(π/8))+jsin(−(π/8)))=  =±j(8)^(1/4) (((√(2+(√2)))/2)−j((√(2−(√2)))/2))=  =±2^(3/4) ×2^(−1) ×2^(1/4) (j(√((√2)+1))+(√((√2)−1)))=  =±(j(√((√2)+1))+(√((√2)−1)))  ⇒z= { ((−1−j+j(√((√2)+1))+(√((√2)−1)))),((−1−j−j(√((√2)+1))−(√((√2)−1)))) :}=  ⇒z= { ((((√((√2)−1))−1)+j((√((√2)+1))−1))),((−((√((√2)−1))+1)−j((√((√2)+1))+1) .■)) :}
z2+2(1+j)z+(1+j)2=(1+j)22(z+1+j)2=1+2j12=2(j1)2(j1)=22(22j22)=22ejπ4z+1+j=±j84ejπ8=±j84(cos(π8)+jsin(π8))==±j84(2+22j222)==±234×21×214(j2+1+21)==±(j2+1+21)z={1j+j2+1+211jj2+121=z={(211)+j(2+11)(21+1)j(2+1+1).◼
Commented by tawa tawa last updated on 10/Jun/17
God bless you sir.
Godblessyousir.
Commented by tawa tawa last updated on 10/Jun/17
Please sir , am still trying to understand the workings sir.   please sir explain to me the steps. i mean the begining
Pleasesir,amstilltryingtounderstandtheworkingssir.pleasesirexplaintomethesteps.imeanthebegining
Commented by tawa tawa last updated on 11/Jun/17
Sir i am lost from. ± j(2^(3/4) )(cos(−(π/8)) + jsin(−(π/8))]   why (−(π/8)) ???. How is it minus sir.   i thought it is.... cos((π/8)) − jsin((π/4))  And how is it   j(2^(3/4) )(((√(2 + (√2)))/2) − j((√(2 − (√(2 ))))/2))  And the next steps......
Siriamlostfrom.±j(234)(cos(π8)+jsin(π8)]why(π8)???.Howisitminussir.ithoughtitis.cos(π8)jsin(π4)Andhowisitj(23/4)(2+22j222)Andthenextsteps
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 11/Jun/17
1)(cosx+jsinx)^n =cosnx+jsinnx  2)e^(jx) =cosx+jsinx  3)e^(−jx) =cos(−x)+jsin(−x)=cosx−jsinx  because: cos(−x)=cosx,sin(−x)=−sinx  ((√2)/2)−j((√2)/2)=cos(−(π/4))+jsin(−(π/4))=e^(−j(π/4))   angles in cos & sin,should be the same.  (z+1+j)^2 =−2(√2)e^(−j(π/4)) =(j)^2 ×2^(3/2) ×e^(−j(π/4))   (√((z+1+j)^2 ))=±(√((j)^2 ×2^(3/2) ×e^(−j(π/4)) ))  z+1+j=±j×2^(3/4) ×e^(−j(π/8))   e^(−j(π/8)) =cos(−(π/8))+jsin(−(π/8))=cos((π/8))−jsin((π/8))  cos(π/8)=(√(((1+cos(π/4))/2)=(√((1+((√2)/2))/2))))=((√(2+(√2)))/2)=  =(((2)^(1/4) (√((√2)+1)))/2)=2^(1/4) ×2^(−1) ×(√((√2)+1))  sin(π/8)=(√((1−cos(π/4))/2))=(√((1−((√2)/2))/2))=((√(2−(√2)))/2)=  =(((2)^(1/4) (√((√2)−1)))/2)=2^(1/4) ×2^(−1) ×(√((√2)−1))  ⇒z+1+j=±j×2^(3/4) ×2^(1/4) ×2^(−1) ((√((√2)+1))−j(√((√2)−1)))=  =±j×2^((3/4)+(1/4)−1) ((√((√2)+1))−j(√((√2)−1)))=  =±j×1×((√((√2)+1))−j(√((√2)−1)))=±j(.....)   is it ok? miss tawa?
1)(cosx+jsinx)n=cosnx+jsinnx2)ejx=cosx+jsinx3)ejx=cos(x)+jsin(x)=cosxjsinxbecause:cos(x)=cosx,sin(x)=sinx22j22=cos(π4)+jsin(π4)=ejπ4anglesincos&sin,shouldbethesame.(z+1+j)2=22ejπ4=(j)2×232×ejπ4(z+1+j)2=±(j)2×232×ejπ4z+1+j=±j×234×ejπ8ejπ8=cos(π8)+jsin(π8)=cos(π8)jsin(π8)cosπ8=1+cosπ42=1+222=2+22==242+12=214×21×2+1sinπ8=1cosπ42=1222=222==24212=214×21×21z+1+j=±j×234×214×21(2+1j21)==±j×234+141(2+1j21)==±j×1×(2+1j21)=±j(..)isitok?misstawa?
Commented by tawa tawa last updated on 11/Jun/17
Yes sir. i understand very well now. God bless you sir. i really appreciate  your time sir.
Yessir.iunderstandverywellnow.Godblessyousir.ireallyappreciateyourtimesir.

Leave a Reply

Your email address will not be published. Required fields are marked *