Menu Close

Solve-the-equations-a-2-2x-3-x-3x-2-3x-2-b-x-4-16-2-2-x-2-4-3x-2-




Question Number 154497 by mathdanisur last updated on 18/Sep/21
Solve the equations:  a)   2 (√(2x^3  - x)) = 3x^2  - 3x + 2  b)   (√((x^4  + 16)/2)) + (√(2(x^2  + 4))) = 3x + 2
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equations}: \\ $$$$\left.\boldsymbol{\mathrm{a}}\right)\:\:\:\mathrm{2}\:\sqrt{\mathrm{2x}^{\mathrm{3}} \:-\:\mathrm{x}}\:=\:\mathrm{3x}^{\mathrm{2}} \:-\:\mathrm{3x}\:+\:\mathrm{2} \\ $$$$\left.\boldsymbol{\mathrm{b}}\right)\:\:\:\sqrt{\frac{\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{16}}{\mathrm{2}}}\:+\:\sqrt{\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{4}\right)}\:=\:\mathrm{3x}\:+\:\mathrm{2} \\ $$
Answered by ARUNG_Brandon_MBU last updated on 18/Sep/21
a. x=1 is a solution
$$\mathrm{a}.\:{x}=\mathrm{1}\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution} \\ $$
Answered by Fridunatjan08 last updated on 19/Sep/21
  Solve the equations:  a)   2 (√(2x^3  - x)) = 3x^2  - 3x + 2    (2(√(2x^3 −x)))^2 =(3x^2 −3x+2)^2   8x^3 −4x = 9x^4 −18x^3 +21x^2 −12x+4  9x^4 −26x^3 +21x^2 −8x+4=0  p(x)=9x^4 −26x^3 +21x^2 −8x+4  p(1)=0  (x−1)(9x^3 −17x^2 +4x−4)=0  x−1=0∣9x^3 −17x^2 +4x−4=0  x_1 =1.
$$ \\ $$$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equations}: \\ $$$$\left.\boldsymbol{\mathrm{a}}\right)\:\:\:\mathrm{2}\:\sqrt{\mathrm{2x}^{\mathrm{3}} \:-\:\mathrm{x}}\:=\:\mathrm{3x}^{\mathrm{2}} \:-\:\mathrm{3x}\:+\:\mathrm{2} \\ $$$$\:\:\left(\mathrm{2}\sqrt{\mathrm{2}{x}^{\mathrm{3}} −{x}}\right)^{\mathrm{2}} =\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}\right)^{\mathrm{2}} \\ $$$$\mathrm{8}{x}^{\mathrm{3}} −\mathrm{4}{x}\:=\:\mathrm{9}{x}^{\mathrm{4}} −\mathrm{18}{x}^{\mathrm{3}} +\mathrm{21}{x}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{4} \\ $$$$\mathrm{9}{x}^{\mathrm{4}} −\mathrm{26}{x}^{\mathrm{3}} +\mathrm{21}{x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{4}=\mathrm{0} \\ $$$${p}\left({x}\right)=\mathrm{9}{x}^{\mathrm{4}} −\mathrm{26}{x}^{\mathrm{3}} +\mathrm{21}{x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{4} \\ $$$${p}\left(\mathrm{1}\right)=\mathrm{0} \\ $$$$\left({x}−\mathrm{1}\right)\left(\mathrm{9}{x}^{\mathrm{3}} −\mathrm{17}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{4}\right)=\mathrm{0} \\ $$$${x}−\mathrm{1}=\mathrm{0}\mid\mathrm{9}{x}^{\mathrm{3}} −\mathrm{17}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{4}=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =\mathrm{1}. \\ $$
Commented by mathdanisur last updated on 19/Sep/21
Very nice Ser thanks
$$\mathrm{Very}\:\mathrm{nice}\:\mathrm{Ser}\:\mathrm{thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *