Menu Close

Solve-the-following-7-x-13-mod-18-Pl-give-complete-process-




Question Number 13744 by AH Soomro last updated on 23/May/17
Solve the following               7^x ≡13(mod 18)  Pl give complete process.
Solvethefollowing7x13(mod18)Plgivecompleteprocess.
Commented by prakash jain last updated on 23/May/17
7≡7 (mod 18)  7^2 =49≡13 (mod 18)  7^3 =343≡1 (mod 18)  7^(3n) ≡1 (mod 18)  7^(3n+1) ≡7(mod 18)  7^(3n+2) ≡13 (mod 18)  x=3n+2, n∈{0,1,2...}
77(mod18)72=4913(mod18)73=3431(mod18)73n1(mod18)73n+17(mod18)73n+213(mod18)x=3n+2,n{0,1,2}
Commented by mrW1 last updated on 23/May/17
∮antastiC!
antastiC!
Commented by RasheedSindhi last updated on 24/May/17
We can come directly to  third step, because Euler′s  theorem tells us that        If  (a,m)=1, then                        a^(∅(m)) ≡1(mod m)         [ where ∅ is Euler function  and  ∅(m) is meant number of  coprimes of  m which are not   greater than m.]  Hence 7^3 ≡1(mod 18)  ∵ ∅(7)=3 and (7,18)=1
Wecancomedirectlytothirdstep,becauseEulerstheoremtellsusthatIf(a,m)=1,thena(m)1(modm)[whereisEulerfunctionand(m)ismeantnumberofcoprimesofmwhicharenotgreaterthanm.]Hence731(mod18)(7)=3and(7,18)=1
Commented by AH Soomro last updated on 24/May/17
Thanks to all.
Thankstoall.
Answered by mrW1 last updated on 23/May/17
7^x =18n+13=7×2(n+1)+4n−1  4n−1=7m  n=((7m+1)/4)  ⇒7^x =18n+13=((18×(7m+1)+52)/4)=((7(9m+5))/2)  ((9m+5)/2)=7^i   m=((2×7^i −5)/9)  for m to be integer ⇒i=1,4,7... or 3k−2 with k∈N^+   i.e. m=((2×7^(3k−2) −5)/9)        (∗ see comment)  ⇒7^x =((7(18m+5))/2)=7×7^(3k−2) =7^(3k−1)   ⇒Solution is x=3k−1, k∈N^+   i.e. x=2,5,8,11...
7x=18n+13=7×2(n+1)+4n14n1=7mn=7m+147x=18n+13=18×(7m+1)+524=7(9m+5)29m+52=7im=2×7i59formtobeintegeri=1,4,7or3k2withkN+i.e.m=2×73k259(seecomment)7x=7(18m+5)2=7×73k2=73k1Solutionisx=3k1,kN+i.e.x=2,5,8,11
Commented by mrW1 last updated on 23/May/17
Here the proof that  m=((2×7^(3k−2) −5)/9)=integer  or  2×7^(3k−2) −5 is divisible by 9.    (1) check for k=1  2×7^(3×1−2) −5=2×7−5=9 ≡0 (mod 9)  ⇒true  (2) supposed it′s true for k  i.e. 2×7^(3k−2) −5 ≡0 (mod 9)  for k+1 we have:  2×7^(3(k+1)−2) −5  =2×7^3 ×7^(3k−2) −7^3 ×5+7^3 ×5−5  =7^3 ×(2×7^(3k−2) −5)+(7^3 −1)×5  =7^3 ×(2×7^(3k−2) −5)+38×9×5 ≡0 (mod 9)  ⇒it′s true for k+1  proved!
Heretheproofthatm=2×73k259=integeror2×73k25isdivisibleby9.(1)checkfork=12×73×125=2×75=90(mod9)true(2)supposeditstrueforki.e.2×73k250(mod9)fork+1wehave:2×73(k+1)25=2×73×73k273×5+73×55=73×(2×73k25)+(731)×5=73×(2×73k25)+38×9×50(mod9)itstruefork+1proved!
Commented by AH Soomro last updated on 24/May/17
Thanks.
Thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *