Menu Close

Solve-the-following-equations-a-x-2-a-2-6x-2-4x-2a-0-b-x-4-4x-3-10x-3-37x-14-0-if-it-known-that-the-left-hand-side-of-the-equation-can-be-decomposed-into-factors-with-integral-coefficients-




Question Number 113272 by 1549442205PVT last updated on 12/Sep/20
Solve the following equations:  a)(x^2 −a)^2 −6x^2 +4x+2a=0  b)x^4 −4x^3 −10x^3 +37x−14=0,if it  known that the left−hand side of the  equation can be decomposed into  factors with integral coefficients.
Solvethefollowingequations:a)(x2a)26x2+4x+2a=0b)x44x310x3+37x14=0,ifitknownthatthelefthandsideoftheequationcanbedecomposedintofactorswithintegralcoefficients.
Answered by behi83417@gmail.com last updated on 12/Sep/20
(x^2 −a)^2 −4x^2 −2(x^2 −2x−a)=0  (x^2 −2x−a)(x^2 +2x−a)−2(x^2 −2x−a)=0  ⇒(x^2 −2x−a)(x^2 +2x−a−2)=0  ⇒ { ((x^2 −2x−a=0⇒x=((1±(√(1+a)))/2))),((x^2 +2x−a−2=0⇒x=((−1±(√(a+3)))/2))) :}
(x2a)24x22(x22xa)=0(x22xa)(x2+2xa)2(x22xa)=0(x22xa)(x2+2xa2)=0{x22xa=0x=1±1+a2x2+2xa2=0x=1±a+32
Commented by 1549442205PVT last updated on 12/Sep/20
Thank you very much!
Thankyouverymuch!
Answered by 1549442205PVT last updated on 13/Sep/20
a)(x^2 −a)^2 −6x^2 +4x+2a=0(∗)  ⇔x^4 −2ax^2 +a^2 −6x^2 +4x+2a=0  ⇔a^2 −2(x^2 −1)a+x^4 −6x^2 +4x=0  We look at this like as a quadratic  equation with respect to a with the  discrimimant Δ′=(x^2 −1)^2 −(x^4 −6x^2 +4x)  =4x^2 −4x+1=(2x−1)^2 .Hence,  we get a=x^2 −1±(2x−1).From that  i)x^2 +2x−2−a=0(1)  ii)x^2 −2x−a=0(2)  Solving eqns.(1)and (2)with respect to   x we ontain:x_(1,2) =1±(√(a+3)) and   x_3 ,_4 =1±(√(a+1))   The roots x_(1,2) are real if a∈[−3;+∞)  and the roots x_(3,4) are real if a∈[1;+∞)  b)We represent the left−hand side of  the equation x^4 −4x^3 −10x^3 +37x−14=0  as (x^2 +ax+c)(x^2 +bx+d)=0  ⇔x^4 +(a+b)x^3 +(ab+c+d)x^2 +(bc+ad)x  +cd≡x^4 −4x^3 −10x^2 +37x−14.We have  a system:   { ((a+b=−4)),((ab+c+d=−10)),((bc+ad=37)),((cd=−14)) :}  Since a,b,c and d are integers,it follows  from the last equation that c=−1,d=14  or c=2,d=−7.The system is completely  satisfied by the second pair of values of   c and d;for these values we get a=−5  and b=1 for the other coefficients.  Solving now the equations  x^2 −5x+2=0(1) and x^2 −x−7=0(2)  we find the roots of the original equation.  x_(1,2) =((5±(√(17)))/2),x_(3,4) =((1±(√(29)))/2).Thus,the  given equation has four roots:  {((5−(√(17)))/2),((5−(√(17)))/2),((1+(√(29)))/2),((1−(√(29)))/2)}
a)(x2a)26x2+4x+2a=0()x42ax2+a26x2+4x+2a=0a22(x21)a+x46x2+4x=0WelookatthislikeasaquadraticequationwithrespecttoawiththediscrimimantΔ=(x21)2(x46x2+4x)=4x24x+1=(2x1)2.Hence,wegeta=x21±(2x1).Fromthati)x2+2x2a=0(1)ii)x22xa=0(2)Solvingeqns.(1)and(2)withrespecttoxweontain:x1,2=1±a+3andx3,4=1±a+1Therootsx1,2arerealifa[3;+)andtherootsx3,4arerealifa[1;+)b)Werepresentthelefthandsideoftheequationx44x310x3+37x14=0as(x2+ax+c)(x2+bx+d)=0x4+(a+b)x3+(ab+c+d)x2+(bc+ad)x+cdx44x310x2+37x14.Wehaveasystem:{a+b=4ab+c+d=10bc+ad=37cd=14Sincea,b,canddareintegers,itfollowsfromthelastequationthatc=1,d=14orc=2,d=7.Thesystemiscompletelysatisfiedbythesecondpairofvaluesofcandd;forthesevalueswegeta=5andb=1fortheothercoefficients.Solvingnowtheequationsx25x+2=0(1)andx2x7=0(2)wefindtherootsoftheoriginalequation.x1,2=5±172,x3,4=1±292.Thus,thegivenequationhasfourroots:{5172,5172,1+292,1292}

Leave a Reply

Your email address will not be published. Required fields are marked *