Solve-the-following-equations-a-x-2-a-2-6x-2-4x-2a-0-b-x-4-4x-3-10x-3-37x-14-0-if-it-known-that-the-left-hand-side-of-the-equation-can-be-decomposed-into-factors-with-integral-coefficients- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 113272 by 1549442205PVT last updated on 12/Sep/20 Solvethefollowingequations:a)(x2−a)2−6x2+4x+2a=0b)x4−4x3−10x3+37x−14=0,ifitknownthattheleft−handsideoftheequationcanbedecomposedintofactorswithintegralcoefficients. Answered by behi83417@gmail.com last updated on 12/Sep/20 (x2−a)2−4x2−2(x2−2x−a)=0(x2−2x−a)(x2+2x−a)−2(x2−2x−a)=0⇒(x2−2x−a)(x2+2x−a−2)=0⇒{x2−2x−a=0⇒x=1±1+a2x2+2x−a−2=0⇒x=−1±a+32 Commented by 1549442205PVT last updated on 12/Sep/20 Thankyouverymuch! Answered by 1549442205PVT last updated on 13/Sep/20 a)(x2−a)2−6x2+4x+2a=0(∗)⇔x4−2ax2+a2−6x2+4x+2a=0⇔a2−2(x2−1)a+x4−6x2+4x=0WelookatthislikeasaquadraticequationwithrespecttoawiththediscrimimantΔ′=(x2−1)2−(x4−6x2+4x)=4x2−4x+1=(2x−1)2.Hence,wegeta=x2−1±(2x−1).Fromthati)x2+2x−2−a=0(1)ii)x2−2x−a=0(2)Solvingeqns.(1)and(2)withrespecttoxweontain:x1,2=1±a+3andx3,4=1±a+1Therootsx1,2arerealifa∈[−3;+∞)andtherootsx3,4arerealifa∈[1;+∞)b)Werepresenttheleft−handsideoftheequationx4−4x3−10x3+37x−14=0as(x2+ax+c)(x2+bx+d)=0⇔x4+(a+b)x3+(ab+c+d)x2+(bc+ad)x+cd≡x4−4x3−10x2+37x−14.Wehaveasystem:{a+b=−4ab+c+d=−10bc+ad=37cd=−14Sincea,b,canddareintegers,itfollowsfromthelastequationthatc=−1,d=14orc=2,d=−7.Thesystemiscompletelysatisfiedbythesecondpairofvaluesofcandd;forthesevalueswegeta=−5andb=1fortheothercoefficients.Solvingnowtheequationsx2−5x+2=0(1)andx2−x−7=0(2)wefindtherootsoftheoriginalequation.x1,2=5±172,x3,4=1±292.Thus,thegivenequationhasfourroots:{5−172,5−172,1+292,1−292} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: I-0-L-2-Rz-2-d-2-z-2-d-2-z-2-R-2-dz-Find-I-Next Next post: 1-lim-x-0-tan-x-4tan-2x-3tan-3x-x-2-tan-x-2-lim-x-0-x-sin-x-x-3-2-3-lim-x-0-x-sin-x-x-5-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.