Menu Close

Solve-the-following-trigonometric-limit-lim-x-pi-4-5tg-x-




Question Number 24864 by A1B1C1D1 last updated on 27/Nov/17
Solve the following trigonometric limit:    lim_(x → (π/4))  (5tg(x)) =
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{following}\:\mathrm{trigonometric}\:\mathrm{limit}: \\ $$$$ \\ $$$$\underset{\mathrm{x}\:\rightarrow\:\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\left(\mathrm{5tg}\left(\mathrm{x}\right)\right)\:=\: \\ $$
Answered by jota+ last updated on 28/Nov/17
 lim_(x→0) sinx=0   lim_(x→0)   cosx=1  ⇒lim_(x→0) tanx=0    h=x−(π/4)    5tan x=    =5tan ((π/4)+h)=5((1+tan h)/(1−tan h)).  lim_(x→π/4) 5tan x=5lim_(h→0) ((1+tan h)/(1−tan h))=5
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{sinx}=\mathrm{0}\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:{cosx}=\mathrm{1} \\ $$$$\Rightarrow\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}tan}{x}=\mathrm{0}\: \\ $$$$\:{h}={x}−\frac{\pi}{\mathrm{4}} \\ $$$$\:\:\mathrm{5tan}\:{x}= \\ $$$$\:\:=\mathrm{5tan}\:\left(\frac{\pi}{\mathrm{4}}+\mathrm{h}\right)=\mathrm{5}\frac{\mathrm{1}+\mathrm{tan}\:{h}}{\mathrm{1}−\mathrm{tan}\:{h}}. \\ $$$$\underset{{x}\rightarrow\pi/\mathrm{4}} {\mathrm{lim}5tan}\:{x}=\mathrm{5}\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}+\mathrm{tan}\:{h}}{\mathrm{1}−\mathrm{tan}\:{h}}=\mathrm{5} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *