Menu Close

Solve-the-given-equation-x-x-3-1-x-x-3-2-x-x-3-3-x-x-3-4-x-x-3-25-1-A-3-51-2-3-50-1-B-3-52-2-3-51-1-C-3-50-2-3-50-1-D-3-51-




Question Number 107198 by abony1303 last updated on 09/Aug/20
Solve the given equation:  (x+(x/3^1 ))∙(x+(x/3^2 ))∙(x+(x/3^3 ))∙(x+(x/3^4 ))∙...∙(x+(x/3^(25) ))=1  A)(3^(51) /(2∙(3^(50) −1)))  B)(3^(52) /(2∙(3^(51) −1)))  C) (3^(50) /(2∙(3^(50) −1)))  D) (3^(51) /(3^(51) −1))  Please help with solution
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{given}\:\mathrm{equation}: \\ $$$$\left(\mathrm{x}+\frac{\mathrm{x}}{\mathrm{3}^{\mathrm{1}} }\right)\centerdot\left(\mathrm{x}+\frac{\mathrm{x}}{\mathrm{3}^{\mathrm{2}} }\right)\centerdot\left(\mathrm{x}+\frac{\mathrm{x}}{\mathrm{3}^{\mathrm{3}} }\right)\centerdot\left(\mathrm{x}+\frac{\mathrm{x}}{\mathrm{3}^{\mathrm{4}} }\right)\centerdot…\centerdot\left(\mathrm{x}+\frac{\mathrm{x}}{\mathrm{3}^{\mathrm{25}} }\right)=\mathrm{1} \\ $$$$\left.\mathrm{A}\left.\right)\left.\frac{\mathrm{3}^{\mathrm{51}} }{\mathrm{2}\centerdot\left(\mathrm{3}^{\mathrm{50}} −\mathrm{1}\right)}\left.\:\:\mathrm{B}\right)\frac{\mathrm{3}^{\mathrm{52}} }{\mathrm{2}\centerdot\left(\mathrm{3}^{\mathrm{51}} −\mathrm{1}\right)}\:\:\mathrm{C}\right)\:\frac{\mathrm{3}^{\mathrm{50}} }{\mathrm{2}\centerdot\left(\mathrm{3}^{\mathrm{50}} −\mathrm{1}\right)}\:\:\mathrm{D}\right)\:\frac{\mathrm{3}^{\mathrm{51}} }{\mathrm{3}^{\mathrm{51}} −\mathrm{1}} \\ $$$$\mathrm{Please}\:\mathrm{help}\:\mathrm{with}\:\mathrm{solution} \\ $$
Commented by abony1303 last updated on 09/Aug/20
Someone, pls help
$$\mathrm{Someone},\:\mathrm{pls}\:\mathrm{help} \\ $$
Commented by mr W last updated on 09/Aug/20
all answers are wrong.
$${all}\:{answers}\:{are}\:{wrong}. \\ $$
Answered by mr W last updated on 09/Aug/20
x^(25) ×((Π_(k=1) ^(25) (1+3^k ))/3^(Σ_(k=1) ^(25) k) )=1  x^(25) =(3^(25×13) /(Π_(k=1) ^(25) (1+3^k )))  ⇒x=(3^(13) /([Π_(k=1) ^(25) (1+3^k )]^(1/(25)) ))
$${x}^{\mathrm{25}} ×\frac{\underset{{k}=\mathrm{1}} {\overset{\mathrm{25}} {\prod}}\left(\mathrm{1}+\mathrm{3}^{{k}} \right)}{\mathrm{3}^{\underset{{k}=\mathrm{1}} {\overset{\mathrm{25}} {\sum}}{k}} }=\mathrm{1} \\ $$$${x}^{\mathrm{25}} =\frac{\mathrm{3}^{\mathrm{25}×\mathrm{13}} }{\underset{{k}=\mathrm{1}} {\overset{\mathrm{25}} {\prod}}\left(\mathrm{1}+\mathrm{3}^{{k}} \right)} \\ $$$$\Rightarrow{x}=\frac{\mathrm{3}^{\mathrm{13}} }{\left[\underset{{k}=\mathrm{1}} {\overset{\mathrm{25}} {\prod}}\left(\mathrm{1}+\mathrm{3}^{{k}} \right)\right]^{\frac{\mathrm{1}}{\mathrm{25}}} } \\ $$
Commented by abony1303 last updated on 09/Aug/20
can we somehow find out the denominator  of the last row?
$$\mathrm{can}\:\mathrm{we}\:\mathrm{somehow}\:\mathrm{find}\:\mathrm{out}\:\mathrm{the}\:\mathrm{denominator} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{last}\:\mathrm{row}? \\ $$
Commented by hgrocks last updated on 09/Aug/20
No That's not easy at all , the denominator is nothing but value of function with roots -3,-6,-9..... at x = -1 and finding that function is not simple

Leave a Reply

Your email address will not be published. Required fields are marked *