Menu Close

solve-the-inequalities-Q-1-1-log-a-2-x-1-log-a-x-gt-1-0-lt-a-lt-1-Q-2-log-x-4x-5-6-5x-lt-1-




Question Number 175335 by infinityaction last updated on 27/Aug/22
     solve the inequalities   Q.(1)  ((1+log_a ^2 x)/(1+log_a x))   > 1   ,  0<a<1    Q.(2)       log_x  ((4x+5)/(6−5x))  <  −1
$$\:\:\:\:\:\mathrm{solve}\:\mathrm{the}\:\mathrm{inequalities} \\ $$$$\:{Q}.\left(\mathrm{1}\right)\:\:\frac{\mathrm{1}+\mathrm{log}_{{a}} ^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{log}_{{a}} {x}}\:\:\:>\:\mathrm{1}\:\:\:,\:\:\mathrm{0}<{a}<\mathrm{1} \\ $$$$\:\:{Q}.\left(\mathrm{2}\right)\:\:\:\:\:\:\:\mathrm{log}_{{x}} \:\frac{\mathrm{4}{x}+\mathrm{5}}{\mathrm{6}−\mathrm{5}{x}}\:\:<\:\:−\mathrm{1} \\ $$
Answered by blackmamba last updated on 27/Aug/22
(1) x>0       let log _a x=t      ((1+t^2 )/(1+t)) −((1+t)/(1+t)) >0     ((t^2 −t)/(t+1)) >0 ⇒((t(t−1))/(t+1)) >0   −1<t<0 ∨ t>1     −1<log _a x<0 ∨ log _a x>1      log _a ((1/a))<log _a x<log _a 1 ∨ log _a x>log _a a    1<x<(1/a) ∨0< x<a
$$\left(\mathrm{1}\right)\:{x}>\mathrm{0} \\ $$$$\:\:\:\:\:{let}\:\mathrm{log}\:_{{a}} {x}={t} \\ $$$$\:\:\:\:\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}+{t}}\:−\frac{\mathrm{1}+{t}}{\mathrm{1}+{t}}\:>\mathrm{0}\: \\ $$$$\:\:\frac{{t}^{\mathrm{2}} −{t}}{{t}+\mathrm{1}}\:>\mathrm{0}\:\Rightarrow\frac{{t}\left({t}−\mathrm{1}\right)}{{t}+\mathrm{1}}\:>\mathrm{0} \\ $$$$\:−\mathrm{1}<{t}<\mathrm{0}\:\vee\:{t}>\mathrm{1} \\ $$$$\:\:\:−\mathrm{1}<\mathrm{log}\:_{{a}} {x}<\mathrm{0}\:\vee\:\mathrm{log}\:_{{a}} {x}>\mathrm{1} \\ $$$$\:\:\:\:\mathrm{log}\:_{{a}} \left(\frac{\mathrm{1}}{{a}}\right)<\mathrm{log}\:_{{a}} {x}<\mathrm{log}\:_{{a}} \mathrm{1}\:\vee\:\mathrm{log}\:_{{a}} {x}>\mathrm{log}\:_{{a}} {a} \\ $$$$\:\:\mathrm{1}<{x}<\frac{\mathrm{1}}{{a}}\:\vee\mathrm{0}<\:{x}<{a}\: \\ $$
Commented by infinityaction last updated on 27/Aug/22
thanks
$${thanks} \\ $$
Answered by mahdipoor last updated on 27/Aug/22
2: if a<b ⇒  { ((c^a <c^b    if  c≥1)),((c^a >c^b    if  0<c<1)) :}  ((4x+5)/(6−5x))>0⇒x∈(((−5)/4),(6/5))  (iii)  ⇒⇒I:   0<x<1 (i)  x^∧ (log_x ((4x+5)/(6−5x))) > x^∧ (−1) ⇒((4x+5)/(6−5x))>(1/x) ⇒   4x^2 +10x−6>0 ⇒x∈R−[−3,(1/2)]   (ii)  i∩ii∩iii=0.5<x<1  ⇒⇒II:  1≤x   (i)  x^∧ (log_x ((4x+5)/(6−5x))) ≤ x^∧ (−1) ⇒((4x+5)/(6−5x))≤(1/x) ⇒   4x^2 +10x−6≤0 ⇒x∈[−3,(1/2)]   (ii)  i∩ii∩iii=∄  I∩II= 0.5<x<1
$$\mathrm{2}:\:{if}\:{a}<{b}\:\Rightarrow\:\begin{cases}{{c}^{{a}} <{c}^{{b}} \:\:\:{if}\:\:{c}\geqslant\mathrm{1}}\\{{c}^{{a}} >{c}^{{b}} \:\:\:{if}\:\:\mathrm{0}<{c}<\mathrm{1}}\end{cases} \\ $$$$\frac{\mathrm{4}{x}+\mathrm{5}}{\mathrm{6}−\mathrm{5}{x}}>\mathrm{0}\Rightarrow{x}\in\left(\frac{−\mathrm{5}}{\mathrm{4}},\frac{\mathrm{6}}{\mathrm{5}}\right)\:\:\left({iii}\right) \\ $$$$\Rightarrow\Rightarrow\mathrm{I}:\:\:\:\mathrm{0}<{x}<\mathrm{1}\:\left({i}\right) \\ $$$${x}^{\wedge} \left({log}_{{x}} \frac{\mathrm{4}{x}+\mathrm{5}}{\mathrm{6}−\mathrm{5}{x}}\right)\:>\:{x}^{\wedge} \left(−\mathrm{1}\right)\:\Rightarrow\frac{\mathrm{4}{x}+\mathrm{5}}{\mathrm{6}−\mathrm{5}{x}}>\frac{\mathrm{1}}{{x}}\:\Rightarrow\: \\ $$$$\mathrm{4}{x}^{\mathrm{2}} +\mathrm{10}{x}−\mathrm{6}>\mathrm{0}\:\Rightarrow{x}\in\mathrm{R}−\left[−\mathrm{3},\frac{\mathrm{1}}{\mathrm{2}}\right]\:\:\:\left({ii}\right) \\ $$$${i}\cap{ii}\cap{iii}=\mathrm{0}.\mathrm{5}<{x}<\mathrm{1} \\ $$$$\Rightarrow\Rightarrow\mathrm{II}:\:\:\mathrm{1}\leqslant{x}\:\:\:\left({i}\right) \\ $$$${x}^{\wedge} \left({log}_{{x}} \frac{\mathrm{4}{x}+\mathrm{5}}{\mathrm{6}−\mathrm{5}{x}}\right)\:\leqslant\:{x}^{\wedge} \left(−\mathrm{1}\right)\:\Rightarrow\frac{\mathrm{4}{x}+\mathrm{5}}{\mathrm{6}−\mathrm{5}{x}}\leqslant\frac{\mathrm{1}}{{x}}\:\Rightarrow\: \\ $$$$\mathrm{4}{x}^{\mathrm{2}} +\mathrm{10}{x}−\mathrm{6}\leqslant\mathrm{0}\:\Rightarrow{x}\in\left[−\mathrm{3},\frac{\mathrm{1}}{\mathrm{2}}\right]\:\:\:\left({ii}\right) \\ $$$${i}\cap{ii}\cap{iii}=\nexists \\ $$$$\mathrm{I}\cap\mathrm{II}=\:\mathrm{0}.\mathrm{5}<{x}<\mathrm{1} \\ $$
Commented by infinityaction last updated on 27/Aug/22
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *