Menu Close

Solve-the-inequality-9-x-1-4-x-18-0-




Question Number 22244 by ajfour last updated on 14/Oct/17
Solve the inequality :   −9((x)^(1/4) )+(√x)+18 ≥ 0 .
$${Solve}\:{the}\:{inequality}\:: \\ $$$$\:−\mathrm{9}\left(\sqrt[{\mathrm{4}}]{{x}}\right)+\sqrt{{x}}+\mathrm{18}\:\geqslant\:\mathrm{0}\:. \\ $$
Answered by $@ty@m last updated on 14/Oct/17
Let (√x)=y  −9(√y)+y+18≥0  9(√y)≤18+y  81y≤324+y^2 +36y  y^2 −45y+324≥0  (y−9)(y−36)≥0  y∈(−∞,9]∪[36,∞)  x∈(0,81]∪[1296,∞)
$${Let}\:\sqrt{{x}}={y} \\ $$$$−\mathrm{9}\sqrt{{y}}+{y}+\mathrm{18}\geqslant\mathrm{0} \\ $$$$\mathrm{9}\sqrt{{y}}\leqslant\mathrm{18}+{y} \\ $$$$\mathrm{81}{y}\leqslant\mathrm{324}+{y}^{\mathrm{2}} +\mathrm{36}{y} \\ $$$${y}^{\mathrm{2}} −\mathrm{45}{y}+\mathrm{324}\geqslant\mathrm{0} \\ $$$$\left({y}−\mathrm{9}\right)\left({y}−\mathrm{36}\right)\geqslant\mathrm{0} \\ $$$${y}\in\left(−\infty,\mathrm{9}\right]\cup\left[\mathrm{36},\infty\right) \\ $$$${x}\in\left(\mathrm{0},\mathrm{81}\right]\cup\left[\mathrm{1296},\infty\right) \\ $$
Commented by ajfour last updated on 14/Oct/17
Thanks, this matches with the  answer given.
$${Thanks},\:{this}\:{matches}\:{with}\:{the} \\ $$$${answer}\:{given}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *