Menu Close

Solve-the-inequality-x-3-x-1-2-x-x-3-4-6-7x-2-29x-4-gt-0-Z-A-




Question Number 164269 by Zaynal last updated on 15/Jan/22
                                Solve the inequality;    (x+3)[(x−1)^2 −x(x+(3/4))]+6+((7x^2 +29x)/4)>0  {Z.A}
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{Solve}}\:\boldsymbol{{the}}\:\boldsymbol{{inequality}}; \\ $$$$\:\:\left(\boldsymbol{{x}}+\mathrm{3}\right)\left[\left(\boldsymbol{{x}}−\mathrm{1}\right)^{\mathrm{2}} −\boldsymbol{{x}}\left(\boldsymbol{{x}}+\frac{\mathrm{3}}{\mathrm{4}}\right)\right]+\mathrm{6}+\frac{\mathrm{7}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{29}\boldsymbol{{x}}}{\mathrm{4}}>\mathrm{0} \\ $$$$\left\{\boldsymbol{{Z}}.\boldsymbol{{A}}\right\} \\ $$
Answered by manxsolar last updated on 15/Jan/22
primer termino raiz x=−3  segundl termino  24+7x^2 +29x=(7x+8)(x+3)/4  factorizando     (x+3)[x^2 −2x+1−x^2 −((3x)/4)+((7x)/4)+(8/4)]⟩0  (x+3)[−2x+1+x+2]⟩0  (x+3)[−x+3]⟩0  por −1  (x+3)(x−3)⟨0  puntoz criticos  x=−3  x..=3  −−−−−−−(−3)−−−−−−−(+3)−−−−−−−              +                                       −                                          +  me piden f(x)⟨0  entonces            x∈<−3;3>  sean x1,x2,x3,........xn    raices del polinomio=(x−x1)(x−x2((x−x3).....                           xn..........x3.......x2.........x1.........         f(x)                                   +                 −              +      condiciones uso  termino x  positivo  x1,x2,x3,     ordenadoz eje carteziano
$${primer}\:{termino}\:{raiz}\:{x}=−\mathrm{3} \\ $$$${segundl}\:{termino}\:\:\mathrm{24}+\mathrm{7}{x}^{\mathrm{2}} +\mathrm{29}{x}=\left(\mathrm{7}{x}+\mathrm{8}\right)\left({x}+\mathrm{3}\right)/\mathrm{4} \\ $$$${factorizando} \\ $$$$\:\:\:\left({x}+\mathrm{3}\right)\left[{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}−{x}^{\mathrm{2}} −\frac{\mathrm{3}{x}}{\mathrm{4}}+\frac{\mathrm{7}{x}}{\mathrm{4}}+\frac{\mathrm{8}}{\mathrm{4}}\right]\rangle\mathrm{0} \\ $$$$\left({x}+\mathrm{3}\right)\left[−\mathrm{2}{x}+\mathrm{1}+{x}+\mathrm{2}\right]\rangle\mathrm{0} \\ $$$$\left({x}+\mathrm{3}\right)\left[−{x}+\mathrm{3}\right]\rangle\mathrm{0} \\ $$$${por}\:−\mathrm{1} \\ $$$$\left({x}+\mathrm{3}\right)\left({x}−\mathrm{3}\right)\langle\mathrm{0} \\ $$$${puntoz}\:{criticos} \\ $$$${x}=−\mathrm{3} \\ $$$${x}..=\mathrm{3} \\ $$$$−−−−−−−\left(−\mathrm{3}\right)−−−−−−−\left(+\mathrm{3}\right)−−−−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:+\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+ \\ $$$${me}\:{piden}\:{f}\left({x}\right)\langle\mathrm{0} \\ $$$${entonces}\:\:\:\:\:\:\:\:\:\:\:\:{x}\in<−\mathrm{3};\mathrm{3}> \\ $$$${sean}\:{x}\mathrm{1},{x}\mathrm{2},{x}\mathrm{3},……..{xn}\:\:\:\:{raices}\:{del}\:{polinomio}=\left({x}−{x}\mathrm{1}\right)\left({x}−{x}\mathrm{2}\left(\left({x}−{x}\mathrm{3}\right)…..\right.\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{xn}……….{x}\mathrm{3}…….{x}\mathrm{2}………{x}\mathrm{1}……… \\ $$$$\:\:\:\:\:\:\:{f}\left({x}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\:\:\:\:\:\:\:\:\:\:\:\:\:\:+ \\ $$$$ \\ $$$$ \\ $$$${condiciones}\:{uso} \\ $$$${termino}\:{x}\:\:{positivo} \\ $$$${x}\mathrm{1},{x}\mathrm{2},{x}\mathrm{3},\:\:\:\:\:{ordenadoz}\:{eje}\:{carteziano} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *