Menu Close

solve-the-integral-problem-cosx-2-sin2x-dx-




Question Number 111616 by mathdave last updated on 04/Sep/20
solve the integral problem  ∫((cosx)/(2−sin2x))dx
solvetheintegralproblemcosx2sin2xdx
Answered by Her_Majesty last updated on 05/Sep/20
∫((cos x)/(2−sin 2x))dx=  (use t=tan (x/2))  =−∫((t^2 −1)/(t^4 +2t^3 +2t^2 −2t+1))dt=  =((√3)/6)∫(((t−1)/(t^2 +(1−(√3))t+2−(√3)))−((t−1)/(t^2 +(1+(√3))t+2+(√3))))dt=  =((√3)/(12))ln ((t^2 +(1−(√3))t+2−(√3))/(t^2 +(1+(√3))t+2+(√3))) −(1/2)(arctan ((1−(√3))t−1) +arctan ((1+(√3))t−1))  now put t=tan (x/2)
cosx2sin2xdx=(uset=tanx2)=t21t4+2t3+2t22t+1dt==36(t1t2+(13)t+23t1t2+(1+3)t+2+3)dt==312lnt2+(13)t+23t2+(1+3)t+2+312(arctan((13)t1)+arctan((1+3)t1))nowputt=tanx2
Answered by ajfour last updated on 05/Sep/20
let x=(π/4)−θ  I=−∫((cos ((π/4)−θ)dθ)/(2−cos 2θ))     =−(1/(2(√2)))∫((cos θ+sin θ)/(sin^2 θ))dθ     =(1/(2(√2))){cosec θ−ln ∣cosec θ−cot θ∣}+c    I =(1/(2(√2)sin ((π/4)−x)))−(1/(2(√2)))ln∣tan ((π/8)−(x/2))∣+c
letx=π4θI=cos(π4θ)dθ2cos2θ=122cosθ+sinθsin2θdθ=122{cosecθlncosecθcotθ}+cI=122sin(π4x)122lntan(π8x2)+c
Commented by Her_Majesty last updated on 05/Sep/20
great, I haven′t thought of this
great,Ihaventthoughtofthis

Leave a Reply

Your email address will not be published. Required fields are marked *