Menu Close

solve-the-integrayion-sin2x-sin5xsin3x-




Question Number 28705 by students last updated on 29/Jan/18
solve the integrayion ((sin2x)/(sin5xsin3x))
$${solve}\:{the}\:{integrayion}\:\frac{{sin}\mathrm{2}{x}}{{sin}\mathrm{5}{xsin}\mathrm{3}{x}} \\ $$
Answered by mrW2 last updated on 30/Jan/18
sin 2x=sin (5x−3x)=sin 5x cos 3x−cos 5x sin 3x  ∫((sin 2x)/(sin 5x sin 3x))dx=∫cot 3x dx−∫cot 5x dx  =((ln (sin 3x))/3)−((ln (sin 5x))/5)+C
$$\mathrm{sin}\:\mathrm{2}{x}=\mathrm{sin}\:\left(\mathrm{5}{x}−\mathrm{3}{x}\right)=\mathrm{sin}\:\mathrm{5}{x}\:\mathrm{cos}\:\mathrm{3}{x}−\mathrm{cos}\:\mathrm{5}{x}\:\mathrm{sin}\:\mathrm{3}{x} \\ $$$$\int\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{sin}\:\mathrm{5}{x}\:\mathrm{sin}\:\mathrm{3}{x}}{dx}=\int\mathrm{cot}\:\mathrm{3}{x}\:{dx}−\int\mathrm{cot}\:\mathrm{5}{x}\:{dx} \\ $$$$=\frac{\mathrm{ln}\:\left(\mathrm{sin}\:\mathrm{3}{x}\right)}{\mathrm{3}}−\frac{\mathrm{ln}\:\left(\mathrm{sin}\:\mathrm{5}{x}\right)}{\mathrm{5}}+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *