Menu Close

Solve-the-integro-differential-equation-i-t-4-di-dt-i-t-dt-2-cos-3t-60-where-i-t-is-a-sinulsodial-current-




Question Number 162168 by MikeH last updated on 27/Dec/21
Solve the integro−differential  equation:   i(t) + 4(di/dt) + ∫i(t)dt = 2 cos (3t+ 60°)  where i(t) is a sinulsodial current.
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{integro}−\mathrm{differential} \\ $$$$\mathrm{equation}: \\ $$$$\:{i}\left({t}\right)\:+\:\mathrm{4}\frac{{di}}{{dt}}\:+\:\int{i}\left({t}\right){dt}\:=\:\mathrm{2}\:\mathrm{cos}\:\left(\mathrm{3}{t}+\:\mathrm{60}°\right) \\ $$$$\mathrm{where}\:{i}\left({t}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{sinulsodial}\:\mathrm{current}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *