Menu Close

Solve-the-ODE-y-xy-x-2-with-y-0-2-Mastermind-




Question Number 169050 by Mastermind last updated on 23/Apr/22
Solve the ODE  y′ + xy = x^2 , with y(0)=2    Mastermind
SolvetheODEy+xy=x2,withy(0)=2Mastermind
Answered by Mathspace last updated on 23/Apr/22
h→y^′ =−xy ⇒(y^′ /y)=−x ⇒  ln∣y∣=−(x^2 /2)+λ ⇒y=k e^(−(x^2 /2))   (mvc)→y^′ =k^′  e^(−(x^2 /2)) −kx e^(−(x^2 /2))   (e)⇒k^(′ ) e^(−(x^2 /2)) −kx e^(−(x^2 /2)) +xk e^(−(x^2 /2)) =x^2   ⇒k^′ =x^2  e^(x^2 /2)  ⇒k=∫_0 ^x  t^2  e^(t^2 /2)  dt +λ  y(x)=(λ+∫_0 ^x  t^2  e^(t^2 /2)  dt)e^(−(x^2 /2))   y(0)=2 ⇒λ=2 ⇒  y(x)=2e^(−(x^2 /2))  +e^(−(x^2 /2))  ∫_0 ^x  t^2  e^(t^2 /2)  dt
hy=xyyy=xlny∣=x22+λy=kex22(mvc)y=kex22kxex22(e)kex22kxex22+xkex22=x2k=x2ex22k=0xt2et22dt+λy(x)=(λ+0xt2et22dt)ex22y(0)=2λ=2y(x)=2ex22+ex220xt2et22dt
Commented by Mastermind last updated on 24/Apr/22
I did not understand this sir,  could you solve it in another way
Ididnotunderstandthissir,couldyousolveitinanotherway

Leave a Reply

Your email address will not be published. Required fields are marked *