Menu Close

Solve-the-PDE-by-method-of-separating-variables-2-u-x-2-2t-2-u-x-t-4u-0-




Question Number 81937 by Joel578 last updated on 16/Feb/20
Solve the PDE by method of separating variables  (∂^2 u/∂x^2 ) + 2t(∂^2 u/(∂x∂t)) − 4u = 0
SolvethePDEbymethodofseparatingvariables2ux2+2t2uxt4u=0
Commented by Joel578 last updated on 16/Feb/20
My approach  Let the solution be  u(x,t) = F(x)G(t)  Substitute u(x,t) to original eq. and divide   by F(x)G(t) yields  (1/F) (d^2 F/dx^2 ) + 2 ((1/F) (dF/dx))((t/T) (dT/dt)) − 4 = 0     Let P(x) = (1/F) (d^2 F/dx^2 ),   M(x) = (2/F) (dF/dx) ,   N(t) = (t/T) (dT/dt)  ⇒ P(x) + M(x)N(t) − 4 = 0  Differentiate both sides with respect to x, then t  ⇒ M ′(x) N ′(t) = 0  which means either M(x) or N(t) is a constant    • Case 1 : N(t) = n  P(x) + n M(x) − 4 = 0  ⇒ (d^2 F/dx^2 ) + 2n (dF/dx) − 4F = 0  ⇒ F(x) = C_1 e^((−n + 2(√(4 + n^2 )))x)  + C_2  e^((−n − 2(√(4 + n^2 )))x)   ⇒ N(t) = (t/T) (dT/dt) = n ⇒ T(t) = C_3  t^n     • Case 2 : M(x) = m  P(x) + m N(t) − 4 = 0
MyapproachLetthesolutionbeu(x,t)=F(x)G(t)Substituteu(x,t)tooriginaleq.anddividebyF(x)G(t)yields1Fd2Fdx2+2(1FdFdx)(tTdTdt)4=0LetP(x)=1Fd2Fdx2,M(x)=2FdFdx,N(t)=tTdTdtP(x)+M(x)N(t)4=0Differentiatebothsideswithrespecttox,thentM(x)N(t)=0whichmeanseitherM(x)orN(t)isaconstantCase1:N(t)=nP(x)+nM(x)4=0d2Fdx2+2ndFdx4F=0F(x)=C1e(n+24+n2)x+C2e(n24+n2)xN(t)=tTdTdt=nT(t)=C3tnCase2:M(x)=mP(x)+mN(t)4=0
Commented by Joel578 last updated on 16/Feb/20
Please guide me with the second case.
Pleaseguidemewiththesecondcase.

Leave a Reply

Your email address will not be published. Required fields are marked *